共查询到20条相似文献,搜索用时 15 毫秒
1.
Zwiewka M Feraru E Möller B Hwang I Feraru MI Kleine-Vehn J Weijers D Friml J 《Cell research》2011,21(12):1711-1722
Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated. Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex. pat4 and pat2, a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β, as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development, but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures. All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs. Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits. Furthermore, both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries. Taken together, these results demonstrate that AP complexes, similar to those in other eukaryotes, exist in plants, and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells. 相似文献
2.
Hong‐Hui Cui Hong‐Ze Liao Yu Tang Xin‐Yu Du Li‐Qun Chen De Ye Xue‐Qin Zhang 《植物学报(英文版)》2015,57(12):1003-1016
In flowering plants, the male and female gametogenesis is a crucial step of sexual reproduction. Although many genes have been identi fied as being involved in the gametogenesis process, the genetic mechanisms underlying gametogenesis remains poorly understood. We reported here characterization of the gene, ABORTED GAMETOPHYTE 1(AOG1) that is newly identi fied as essential for gametogenesis in Arabidopsis thaliana. AOG1 is expressed predominantly in reproductive tissues including the developing pollen grains and ovules. The AOG1 protein shares no signi ficant amino acid sequence similarity with other documented proteins and is located mainly in nuclei of the cells. Mutation in AOG1 caused degeneration of pollen at the uninucleate microspore stage and severe defect in embryo sacs, leading to a signi ficant reduction in male and female fertility.Furthermore, the molecular analyses showed that the aog1 mutant signi ficantly affected the expression of several genes, which are required for gametogenesis. Our results suggest that AOG1 plays important roles in gameto genesis at the stage prior to pollen mitosis I(PMI)in Arabidopsis, possibly through collaboration with other genes. 相似文献
3.
Kazuhiro Hayashi Ge-Hong Sun-Wada Mayumi Nakanishi-Matsui Masamitsu Futai 《BBA》2008,1777(10):1370-1377
Mammalian vacuolar-type proton pumping ATPases (V-ATPases) are diverse multi-subunit proton pumps. They are formed from membrane Vo and catalytic V1 sectors, whose subunits have cell-specific or ubiquitous isoforms. Biochemical study of a unique V-ATPase is difficult because ones with different isoforms are present in the same cell. However, the properties of mouse isoforms can be studied using hybrid V-ATPases formed from the isoforms and other yeast subunits. As shown previously, mouse subunit E isoform E1 (testis-specific) or E2 (ubiquitous) can form active V-ATPases with other subunits of yeast, but E1/yeast hybrid V-ATPase is defective in proton transport at 37 °C (Sun-Wada, G.-H., Imai-Senga, Y., Yamamoto, A., Murata, Y., Hirata, T., Wada, Y., and Futai, M., 2002, J. Biol. Chem. 277, 18098-18105). In this study, we have analyzed the properties of E1/yeast hybrid V-ATPase to understand the role of the E subunit. The proton transport by the defective hybrid ATPase was reversibly recovered when incubation temperature of vacuoles or cells was shifted to 30 °C. Corresponding to the reversible defect of the hybrid V-ATPase, the Vo subunit a epitope was exposed to the corresponding antibody at 37 °C, but became inaccessible at 30 °C. However, the V1 sector was still associated with Vo at 37 °C, as shown immunochemically. The control yeast V-ATPase was active at 37 °C, and its epitope was not accessible to the antibody. Glucose depletion, known to dissociate V1 from Vo in yeast, had only a slight effect on the hybrid at acidic pH. The domain between Lys26 and Val83 of E1, which contains eight residues not conserved between E1 and E2, was responsible for the unique properties of the hybrid. These results suggest that subunit E, especially its amino-terminal domain, plays a pertinent role in the assembly of V-ATPase subunits in vacuolar membranes. 相似文献
4.
5.
Juan M Duran Felix Campelo Josse van Galen Timo Sachsenheimer Jesús Sot Mikhail V Egorov Carles Rentero Carlos Enrich Roman S Polishchuk Félix M Goñi Britta Brügger Felix Wieland Vivek Malhotra 《The EMBO journal》2012,31(24):4535-4546
Sphingomyelin and cholesterol can assemble into domains and segregate from other lipids in the membranes. These domains are reported to function as platforms for protein transport and signalling. Do similar domains exist in the Golgi membranes and are they required for protein secretion? We tested this hypothesis by using D ‐ceramide‐C6 to manipulate lipid homeostasis of the Golgi membranes. Lipidomics of the Golgi membranes isolated from D ‐ceramide‐C6‐treated HeLa cells revealed an increase in the levels of C6‐sphingomyelin, C6‐glucosylceramide, and diacylglycerol. D ‐ceramide‐C6 treatment in HeLa cells inhibited transport carrier formation at the Golgi membranes without affecting the fusion of incoming carriers. The defect in protein secretion as a result of D ‐ceramide‐C6 treatment was alleviated by knockdown of the sphingomyelin synthases 1 and 2. C6‐sphingomyelin prevented liquid‐ordered domain formation in giant unilamellar vesicles and reduced the lipid order in the Golgi membranes of HeLa cells. These findings highlight the importance of a regulated production and organization of sphingomyelin in the biogenesis of transport carriers at the Golgi membranes. 相似文献
6.
7.
Ahmed SU Rojo E Kovaleva V Venkataraman S Dombrowski JE Matsuoka K Raikhel NV 《The Journal of cell biology》2000,149(7):1335-1344
Many soluble plant vacuolar proteins are sorted away from secreted proteins into small vesicles at the trans-Golgi network by transmembrane cargo receptors. Cleavable vacuolar sorting signals include the NH(2)-terminal propeptide (NTPP) present in sweet potato sporamin (Spo) and the COOH-terminal propeptide (CTPP) present in barley lectin (BL). These two proteins have been found to be transported by different mechanisms to the vacuole. We examined the ability of the vacuolar cargo receptor AtELP to interact with the sorting signals of heterologous and endogenous plant vacuolar proteins in mediating vacuolar transport in Arabidopsis thaliana. AtELP extracted from microsomes was found to interact with the NTPPs of barley aleurain and Spo, but not with the CTPPs of BL or tobacco chitinase, in a pH-dependent and sequence-specific manner. In addition, EM studies revealed the colocalization of AtELP with NTPP-Spo at the Golgi apparatus, but not with BL-CTPP in roots of transgenic Arabidopsis plants. Further, we found that AtELP interacts in a similar manner with the NTPP of the endogenous vacuolar protein AtALEU (Arabidopsis thaliana Aleu), a protein highly homologous to barley aleurain. We hypothesize that AtELP functions as a vacuolar sorting receptor involved in the targeting of NTPP-, but not CTPP-containing proteins in Arabidopsis. 相似文献
8.
At yeast vacuoles, phosphorylation of the HOPS subunit Vps41 depends on the Yck3 kinase. In a screen for mutants that mimic the yck3Delta phenotype, in which Vps41 accumulates in vacuolar dots, we observed that mutants in the V0-part of the V0/V1-ATPase, in particular in vma16Delta, also accumulate Vps41. This accumulation is not due to a phosphorylation defect, but to reduced release of Vps41 from vma16Delta vacuoles. One reason could be a connection to vacuole fission, which is blocked in V-ATPase mutants. Vacuole fusion is not impaired between vacuoles lacking the V0-subunits Vma16 or Vma6 and wild-type vacuoles, whereas fusion between mutant vacuoles is reduced. Our data suggest a connection between vacuole biogenesis and membrane fusion. 相似文献
9.
In mammalian cells, E-type cyclins (E1 and E2) are generally believed to be required for entry into S phase. However, in mice, cyclin E is largely dispensable for normal embryogenesis. Moreover, Drosophila cyclin E plays a critical role in cell fate determination in neural lineages independently of proliferation. Thus, the functions of cyclin E, particularly during early development, remain elusive. Here, we investigated the requirement for E-type cyclins during Xenopus embryogenesis. Although cyclin E1 has been reported as a maternal cyclin, inhibition of its translation in the embryo caused no serious defects. We isolated a Xenopus homologue of human cyclin E2, which was zygotically expressed. Sufficient inhibition of its expression led to death at late gastrula, while partial inhibition allowed survival. These observations indicate distinct roles for Xenopus cyclins E1 and E2, and an absolute requirement of cyclin E2 for Xenopus embryogenesis. 相似文献
10.
Sebastian Hassler Lilia Lemke Benjamin Jung Torsten Möhlmann Falco Krüger Karin Schumacher Luca Espen Enrico Martinoia H. Ekkehard Neuhaus 《The Plant journal : for cell and molecular biology》2012,72(5):732-744
The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance. 相似文献
11.
Arabidopsis NSN1 encodes a nucleolar GTP-binding protein and is required for flower development. Defective flowers were formed in heterozygous nsn1/+?plants. Homozygous nsn1 plants were dwarf and exhibited severe defects in reproduction. Arrests in embryo development in nsn1 could occur at any stage of embryogenesis. Cotyledon initiation and development during embryogenesis were distorted in nsn1 plants. At the seedling stage, cotyledons and leaves of nsn1 formed upward curls. The curled leaves developed meristem-like outgrowths or hyperplasia tissues in the adaxial epidermis. Long and enlarged pavement cells, characteristic of the abaxial epidermis of wild type plants, were found in the adaxial epidermis in nsn1 leaves, suggesting a disoriented leaf polarity in the mutant. The important role of NSN1 in embryo development and leaf differentiation was consistent with the high level expression of the NSN1 gene in the developing embryos and the primordia of cotyledons and leaves. The CLAVATA 3 (CLV3) gene, a stem cell marker in the Arabidopsis shoot apical meristem (SAM), was expressed in expanded regions surrounding the SAM of nsn1 plants, and induced ectopically in the meristem-like outgrowths in cotyledons and leaves. The nsn1 mutation up-regulated the expression levels of several genes implicated in the meristem identity and the abaxial cell fate, and repressed the expression of other genes related to the specification of cotyledon boundary and abaxial identity. These results demonstrate that NSN1 represents a novel GTPase required for embryogenesis, leaf development and leaf polarity establishment in Arabidopsis. 相似文献
12.
The reorganization of actin filaments (AFs) and vacuoles in guard cells is involved in the regulation of stomatal movement. However, it remains unclear whether there is any interaction between the reorganization of AFs and vacuolar changes during stomatal movement. Here, we report the relationship between the reorganization of AFs and vacuolar fusion revealed in pharmacological experiments, and characterizing stomatal opening in actin‐related protein 2 (arp2) and arp3 mutants. Our results show that cytochalasin‐D‐induced depolymerization or phalloidin‐induced stabilization of AFs leads to an increase in small unfused vacuoles during stomatal opening in wild‐type (WT) Arabidopsis plants. Light‐induced stomatal opening is retarded and vacuolar fusion in guard cells is impaired in the mutants, in which the reorganization and the dynamic parameters of AFs are aberrant compared with those of the WT. In WT, AFs tightly surround the small separated vacuoles, forming a ring that encircles the boundary membranes of vacuoles partly fused during stomatal opening. In contrast, in the mutants, most AFs and actin patches accumulate abnormally around the nuclei of the guard cells, which probably further impair vacuolar fusion and retard stomatal opening. Our results suggest that the reorganization of AFs regulates vacuolar fusion in guard cells during stomatal opening. 相似文献
13.
14.
Localization of vacuolar transport receptors and cargo proteins in the Golgi apparatus of developing Arabidopsis embryos 总被引:4,自引:1,他引:4
Hinz G Colanesi S Hillmer S Rogers JC Robinson DG 《Traffic (Copenhagen, Denmark)》2007,8(10):1452-1464
Using immunogold electron microscopy, we have investigated the relative distribution of two types of vacuolar sorting receptors (VSR) and two different types of lumenal cargo proteins, which are potential ligands for these receptors in the secretory pathway of developing Arabidopsis embryos. Interestingly, both cargo proteins are deposited in the protein storage vacuole, which is the only vacuole present during the bent-cotyledon stage of embryo development. Cruciferin and aleurain do not share the same pattern of distribution in the Golgi apparatus. Cruciferin is mainly detected in the cis and medial cisternae, especially at the rims where storage proteins aggregate into dense vesicles (DVs). Aleurain is found throughout the Golgi stack, particularly in the trans cisternae and trans Golgi network where clathrin-coated vesicles (CCVs) are formed. Nevertheless, aleurain was detected in both DV and CCV. VSR-At1, a VSR that recognizes N-terminal vacuolar sorting determinants (VSDs) of the NPIR type, localizes mainly to the trans Golgi and is hardly detectable in DV. Receptor homology-transmembrane-RING H2 domain (RMR), a VSR that recognizes C-terminal VSDs, has a distribution that is very similar to that of cruciferin and is found in DV. Our results do not support a role for VSR-At1 in storage protein sorting, instead RMR proteins because of their distribution similar to that of cruciferin in the Golgi apparatus and their presence in DV are more likely candidates. Aleurain, which has an NPIR motif and seems to be primarily sorted via VSR-At1 into CCV, also possesses putative hydrophobic sorting determinants at its C-terminus that could allow the additional incorporation of this protein into DV. 相似文献
15.
The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses 总被引:2,自引:0,他引:2
Duprat A Caranta C Revers F Menand B Browning KS Robaglia C 《The Plant journal : for cell and molecular biology》2002,32(6):927-934
An Arabidopsis thaliana line bearing a transposon insertion in the gene coding for the isozyme form of the plant-specific cap-binding protein, eukaryotic initiation factor (iso) 4E (eIF (iso) 4E), has been isolated. This mutant line completely lacks both eIF(iso)4E mRNA and protein, but was found to have a phenotype and fertility indistinguishable from wild-type plants under standard laboratory conditions. In contrast, the amount of the related eIF4E protein was found to increase in seedling extracts. Furthermore, polysome analysis shows that the mRNA encoding eIF4E was being translated at increased levels. Given the known interaction between cap-binding proteins and potyviral genome-linked proteins (VPg), this plant line was challenged with two potyviruses, Turnip mosaic virus (TuMV) and Lettuce mosaic virus (LMV) and was found resistant to both, but not to the Nepovirus, Tomato black ring virus (TBRV) and the Cucumovirus, Cucumber mosaic virus (CMV). Together with previous data showing that the VPg-eIF4E interaction is necessary for virus infectivity and upregulates genome amplification, this shows that the eIF4E proteins are specifically recruited for the replication cycle of potyviruses. 相似文献
16.
FRL1 is required for petal and sepal development in Arabidopsis 总被引:2,自引:0,他引:2
Hase Y Tanaka A Baba T Watanabe H 《The Plant journal : for cell and molecular biology》2000,24(1):21-32
A novel flower mutant, frl1 (frill 1) was isolated in Arabidopsis thaliana. The frl1 mutant has serrated petals and sepals but the other floral and vegetative organs appear to be normal. To analyse the role of the FRL1 gene, morphological, cytological and double mutant analyses were carried out. The frl1 flower had broader petals and sepals as compared with the wild-type. The distal region of frl1 petals contained fewer epidermal cells but their size was variable and generally larger than that in the wild-type. However, no significant difference was found in the basal region. Observations of the early petal development revealed that the morphology of the developing frl1 petal was normal until the middle of stage 9, but the frl1 phenotype became apparent in stages later than 10. Furthermore, larger nuclei with varied sizes were observed in the distal region of frl1 petals, but not in this region in wild-type petals. This strongly suggests that abnormal endo-reduplication had occurred. These observations indicate that the frl1 mutation affects the number of cell divisions and the subsequent cell expansion during the late stage of petal lamina formation, and that FRL1 might be maintaining the mitotic state or suppressing the transition to the endo-reduplication cycle. Double mutants with the homeotic mutants apetala3-1 and agamous showed additive phenotypes. Ectopic petals in the third whorl of fr11 ag flowers were serrated, indicating that the FRL1 gene acts in petal and sepal development in an organ-specific manner. 相似文献
17.
The lysosomal trafficking of the mannose 6-phosphate receptor and sortilin require that the Golgi-localized, gamma-ear-containing, ADP ribosylation factor (Arf)-binding proteins (GGAs) be recruited to Golgi membranes where they bind a signal in the cytosolic tail of the receptors and recruit clathrin to form trafficking vesicles. GGA recruitment to membranes requires Arf1, a protein that cycles between a GDP-bound inactive state and GTP-bound active state. The guanine nucleotide exchange factors (GEFs) promote the formation of Arf-GTP, while the GTPase activating proteins induce hydrolysis of GTP to GDP. We provide evidence that the GEF, GBF1, colocalizes with the GGAs and interacts with the GGAs. Depletion of GBF1 or expression of an inactive mutant prevents recruitment of the GGAs to Golgi membranes and results in the improper sorting of cargo. In summary, we show that GBF1 is required for GGA recruitment to Golgi membranes and plays a role in the proper processing and sorting of lysosomal cargo. 相似文献
18.
Stefano G Renna L Moss T McNew JA Brandizzi F 《The Plant journal : for cell and molecular biology》2012,69(6):957-966
The mechanisms underlying the organization and dynamics of plant endomembranes are largely unknown. Arabidopsis RHD3, a distant member of the dynamin superfamily, has recently been implicated in plant ER morphology and Golgi movement through analyses of dominant-negative mutants of the putative GTPase domain in a heterologous system. Whether RHD3 is indispensable for ER architecture and what role regions other than the putative GTPase domain play in RHD3 function are unanswered questions. Here we characterized an EMS mutant, gom8, with disrupted Golgi movement and positioning and compromised ER shape and dynamics. gom8 mapped to a missense mutation in the RHD3 hairpin loop domain, causing accumulation of the mutant protein into large structures, a markedly different distribution compared with wild-type RHD3 over the ER network. Despite the GOM8 distribution, tubules fused in the peripheral ER of the gom8 mutant. These data imply that integrity of the hairpin region is important for the subcellular distribution of RHD3, and that reduced availability of RHD3 over the ER can cause ER morphology defects, but does not prevent peripheral fusion between tubules. This was confirmed by evidence that gom8 was phenocopied in an RHD3 null background. Furthermore, we established that the region encompassing the RHD3 hairpin domain and the C-terminal cytosolic domain is necessary for RHD3 function. We conclude that RHD3 is important in ER morphology, but is dispensable for peripheral ER tubulation in an endogenous context, and that its activity relies on the C-terminal region in addition to the GTPase domain. 相似文献
19.
20.
TRANSPARENT TESTA 13 is a tonoplast P3A‐ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds 下载免费PDF全文
Ingo Appelhagen Niclas Nordholt Thorsten Seidel Kees Spelt Ronald Koes Francesca Quattrochio Martin Sagasser Bernd Weisshaar 《The Plant journal : for cell and molecular biology》2015,82(5):840-849
Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P‐type H+‐ATPases in the plasma membrane, and multimeric vacuolar‐type H+‐ATPases (V‐ATPases) and vacuolar H+‐pyrophosphatases (H+‐PPases) in endomembranes. Here, we show that reduced accumulation of proanthocyanidins (PAs) and hence the diminished brown seed coloration found in the Arabidopsis thaliana mutant transparent testa 13 (tt13) is caused by disruption of the gene encoding the P3A‐ATPase AHA10. Identification of the gene encoded by the tt13 locus completes the molecular characterization of the classical set of transparent testa mutants. Cells of the tt13 seed coat endothelium do not contain PA‐filled central vacuoles as observed in the wild‐type. tt13 phenocopies tt12, a mutant that is defective in vacuolar import of the PA precursor epicatechin. Our data show that vacuolar loading with PA precursors depends on TT13. Consistent with the tt13 phenotype, but in contrast to other isoforms of P‐type H+‐ATPases, TT13 localizes to the tonoplast. PA accumulation in tt13 is partially restored by expression of the tonoplast localized H+‐PPase VHP1. Our findings indicate that the P3A‐ATPase TT13 functions as a proton pump in the tonoplast of seed coat endothelium cells, and generates the driving force for TT12‐mediated transport of PA precursors to the vacuole. 相似文献