首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The reoxidation of reduced yeast Complex III by oxidants believed to react with cytochrome c1 exhibited multiple phases for both cytochrome c1 and the cytochromes b; the reoxidation of cytochrome b, but not cytochrome c1, was markedly slowed by the presence of antimycin. The data are consistent with the Q-cycle or any other scheme which proposes a branched path for electron transport between the cytochrome b centers and the endogenous Q6, provided certain constraints are relaxed. The reoxidation of the endogenous quinone proceeded at a rate comparable to that of the rapidly reacting cytochrome b and appeared to be complete within 100 ms. Removal of the endogenous quinone did not change the rate or extent of reoxidation of any of the heme centers, demonstrating that quinone is not required for electron transport between cytochromes b and the iron-sulfur cluster. This result is inconsistent with the requirements of the Q-cycle. Funiculosin completely inhibited the reoxidation of cytochrome b whereas the reoxidation of cytochrome c1 exhibited simple first-order kinetics in the presence of this inhibitor, implying that the iron-sulfur cluster is on the direct path of electron transfer from cytochrome b to cytochrome c1. Potent inhibition of cytochrome b oxidation was also observed with myxothiazol and mucidin. The reaction of reduced Complex III with Q1 also exhibited multiple phases in the oxidation of the cytochrome b centers; these phases were unaffected by the presence of myxothiazol. Addition of antimycin, or removal of the endogenous quinone, eliminated the rapid phases; only one of the cytochrome b centers was oxidized under these conditions. Epr showed that it is the low-potential cytochrome b that is the species rapidly oxidized.  相似文献   

3.
Pyrrolnitrin, at low concentrations, uncouples oxidative phosphorylation in Neurospora mitochondria. At higher concentrations, pyrrolnitrin inhibits electron transport both in the flavine region and through cytochrome oxidase.  相似文献   

4.
The cytochrome b(6)f complex is an obligatory electron transfer and proton-translocating enzyme in all oxygenic photosynthesis. Its operation has been described by the "Q-cycle." This model proposes that electrons are transferred from plastoquinol to plastocyanin (the reductant of P700 in Photosystem I) through, obligatorily in series, the iron-sulfur and the cytochrome f redox centers in the cytochrome b(6)f complex. However, here we demonstrate that (a) the iron-sulfur center-dependent reductions of plastocyanin and P700 are much faster than cytochrome f reduction, both in Chlamydomonas reinhardtii cytochrome f mutants and in the wild type, and (b) the steady-state photosynthetic electron transport does not correlate with strongly inhibited cytochrome f reduction kinetics in the mutants. Thus, cytochrome f is not an obligatory intermediate for electrons flowing through the cytochrome b(6)f complex. The oxidation equivalents from Photosystem I are delivered to the high potential chain of the cytochrome b(6)f complex both at the cytochrome f level and, independently, at another site connected to the quinol-oxidizing site, possibly the iron-sulfur center.  相似文献   

5.
Radioimmunoassay and quantitative immunoblot analysis have been developed for quantitation of the iron-sulfur protein of cytochrome bc1 complex in order to compare its content in isolated cytochrome bc1 complex with that in electron transport particles. The result by radioimmunoassay indicated that the content of the iron-sulfur protein/mol of cytochrome b is higher by approximately 30%, on the average, in electron transport particles than in cytochrome bc1 complex. This observation was supported by the data of immunoblot analysis. Since approximately 1/3 of cytochrome b in electron transport particles is not attributed to cytochrome bc1 complex, but to succinate-ubiquinone oxidoreductase complex (Davis, K.A., Hatefi, Y., Poff, K. L., and Butler, W. L. (1973) Biochim. Biophys. Acta 325, 341-356), the ratio of the iron-sulfur protein detectable by radioimmunoassay in electron transport particles to that in cytochrome bc1 complex is calculated to be approximately 2 on the basis of the content of 2 mol of b-type heme/mol of the complex. Therefore, it appears that the mitochondrial inner membrane contains approximately two times as much of the immunoreactive iron-sulfur protein as what is expected from the stoichiometry of one iron-sulfur center and two b-type hemes for cytochrome bc1 complex. This finding affords an interesting aspect in the study of biogenesis of cytochrome bc1 complex.  相似文献   

6.
The Photosystem I acceptor system of a subchloroplast particle from spinach was investigated by optical and electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur proteins by urea/ferricyanide solution. The chemical analysis of iron and sulfur and the ESR properties of centers A, B and X are consistent with the participation of three iron-sulfur centers in Photosystem I. A differential decrease in centers A, B and X is observed under conditions that induce S2? →S0 conversion in the bound iron-sulfur proteins. Center B is shown to be the most susceptible, while center ‘X’ is the least susceptible component to oxidative denaturation. Stepwise inactivation experiments suggest that electron transport in Photosystem I does not occur sequentially from X→B→A, since there is quantitative photoreduction of center A in the absence of center B. We propose that center A is directly reduced by X; thus, X may serve as a branch point for parallel electron flow through centers A and B.  相似文献   

7.
The cell membrane-associated respiratory electron transport chain of Neisseria gonorrhoeae was examined using electron paramagnetic spectroscopy (EPR) at liquid helium temperatures and optical spectroscopy at liquid nitrogen and room temperatures. EPR spectra of dithionite-reduced particles indicated the presence of centers N-1 and N-3 in the site I region of the respiratory chain, whereas reduction with succinate revealed the existence of center S-1 from the succinate cytochrome c reductase segment. Free radical(s) resembling that due to falvin semiquinone were observed with both reductants. Low temperature (77 K) optical difference spectra indicated the presence of cytochromes with alpha band maxima at 549, 557, and 562. Bands at 567, 535, and 417 nm, characteristic of the CO compound of cytochrome o, were also identified. Cytochromes a1 and a3 were not detected; however, a broad but weak absorbance with an alpha band maximun at 600 nm and a Soret shoulder at 440 nm was observed. Hence the respiratory chain of N. gonorrhoeae appears to contain several nonheme iron centers, cytochrome c, two b cytochromes, with cytochrome o which probably serves as the terminal oxidase.  相似文献   

8.
A bacterial strain identified as Burkholderia cepacia NB-1 was isolated from water ponds in the botanical garden in Tübingen, Germany, and was found to produce a broad spectrum phenylpyrrole antimicrobial substance active against filamentous fungi, yeasts and Gram-positive bacteria. In batch culture containing glycerol and L- glutamic acid, the isolate NB-1 produced the antibiotic optimally late in the growth phase and accumulated a main portion in their cells. Isolation and purification of the antibiotic from Burkholderia (Pseudomonas) cepacia NB-1 by acetone extraction, gel filtration on Sephadex LH-20 and preparative HPLC yielded 0·54 mg l−1 of a pure substance. Spectroscopic data (HPLC, MS and NMR) confirmed that the compound was pyrrolnitrin [3-chloro-4-(2'-nitro-3'-chloro-phenyl) pyrrole]. Pyrrolnitrin has an inhibitory effect on the electron transport system, as demonstrated by isolated mitochondria from Neurospora crassa 74 A. This inhibition was relieved by N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD), indicating that pyrrolnitrin blocked the electron transfer between the dehydrogenases and the cytochrome components of the respiratory chain. Among Gram-positive bacteria, pyrrolnitrin was most active against certain Streptomyces species, especially S. antibioticus , which has not previously been described in the literature. In the presence of pyrrolnitrin, aerial mycelium and spore formation of Strep. antibioticus was suppressed, although growth continued via substrate mycelium. The new findings of inhibition of streptomycetes and their secondary metabolism by pyrrolnitrin may contribute to the fact that Pseudomonas species predominate in soil and compete even with antibiotic-producing Streptomyces.  相似文献   

9.
Photosystem I charge separation in a subchloroplast particle isolated from spinach was investigated by electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur centers by urea-ferricyanide treatment. Previous work demonstrated a differential decrease in iron-sulfur centers A, B and X which indicated that center X serves as a branch point for parallel electron flow through centers A and B (Golbeck, J.H. and Warden, J.T. (1982) Biochim. Biophys. Acta 681, 77-84). We now show that during inactivation the disappearance of iron-sulfur centers A, B, and X correlates with the appearance of a spin-polarized triplet ESR signal with [D] = 279 X 10(-4) cm-1 and [E] = 39 X 10(-4) cm-1. The triplet resonances titrate with a midpoint potential of +380 +/- 10 mV. Illumination of the inactivated particles results in the generation of an asymmetric ESR signal with g = 2.0031 and delta Hpp = 1.0 mT. Deconvolution of the P-700+ contribution to this composite resonance reveals the spectrum of the putative primary acceptor species A0, which is characterized by g = 2.0033 +/- 0.0004 and delta Hpp = 1.0 +/- 0.2 mT. The data presented in this report do not substantiate the participation of the electron acceptor A1 in PS I electron transport, following destruction of the iron-sulfur cluster corresponding to center X. We suggest that A1 is closely associated with center X and that this component is decoupled from the electron-transport path upon destruction of center X. The inability to photoreduce A1 in reaction centers lacking a functional center X may result from alteration of the reaction center tertiary structure by the urea-ferricyanide treatment or from displacement of A1 from its binding site.  相似文献   

10.
A single alkaline wash removes most of the succinic dehydrogenase activity from chromatophores of Rhodopseudomonas sphaeroides. Three iron-sulfur centers are also removed by this washing. Two of these are ferredoxin-like centers with electron paramagnetic resonance signals at gv = 1.94 and midpoint potentials of +50 and ?250 mV at pH 7. The third is a high-potential iron-sulfur protein type signal centered at g 2.01 and a midpoint potential of +80 mV at pH 7. These centers have very similar properties to those of the well-characterized mammalian succinic dehydrogenase and account for the majority of iron-sulfur centers observed in chromatophores. Because it is so easily removed, it is concluded that succinic dehydrogenase is located on the outer surface of the chromatophore membrane, a conclusion supported by the fact that removal of the enzyme does not interfere with the kinetics of light-induced electron flow, nor does it allow cytochrome c2 to escape from inside the chromatophore vesicles.  相似文献   

11.
The kinetics of light-driven electron flow and the nature of redox centers at apparent photosynthetic membrane growth initiation sites in Rhodopseudomans sphaeroides were compared to those of intracytoplasmic photosynthetic membranes. In sucrose gradients, these membrane growth sites sediment more slowly than intracytoplasmic membrane-derived chromatophores and form an upper pigmented band. Cytochromes c1, c2, b561, and b566 were demonstrated in the upper fraction by redox potentiometry; c-type cytochromes were also detected electrophoretically. Signals characteristic of light-induced reaction center bacteriochlorophyll triplet and photooxidized reaction center bacteriochlorophyll dimer states were observed by EPR spectroscopy but the Rieske iron-sulfur signal of the ubiquinol-cytochrome c2 oxidoreductase was present at a 3-fold reduced level on a reaction center basis in comparison to chromatophores. Flash-induced absorbance measurements of the upper pigmented fraction demonstrated reaction center primary and secondary semiquinone anion acceptor signals, but cytochrome b561 photoreduction and cytochrome c1/c2 reactions occurred at slow rates. This fraction was enriched approximately 2- and 4-fold in total b- and c-type cytochromes, respectively, per reaction center over chromatophores, but photoreducible b-type cytochrome was lower. Measurements of respiratory activity indicated a 1.6-fold higher level of succinate-cytochrome c oxidoreductase/reaction center than in chromatophores, but the apparent turnover rates in both preparations were low. Overall, the results suggest that complete cycles of rapid, light-driven electron flow do not occur merely by introduction of newly synthesized reaction centers into respiratory membrane, but that subsequent synthesis and assembly of appropriate components of the ubiquinol-cytochrome c2 oxidoreductase is required.  相似文献   

12.
Menaquinol-nitrate oxidoreductase of Bacillus halodenitrificans.   总被引:2,自引:0,他引:2       下载免费PDF全文
When grown anaerobically on nitrate-containing medium, Bacillus halodenitrificans exhibited a membrane-bound nitrate reductase (NR) that was solubilized by 2% Triton X-100 but not by 1% cholate or deoxycholate. Purification on columns of DE-52, hydroxylapatite, and Sephacryl S-300 yielded reduced methyl viologen NR (MVH-NR) with specific activities of 20 to 35 U/mg of protein that was stable when stored in 40% sucrose at -20 degrees C for 6 weeks. 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxypropone-1-sulfonat e (CHAPSO) and dodecyl-beta-D-maltoside stimulated enzyme activity three- to fourfold. Membrane extractions yielded purified NR that separated after electrophoresis into a 145-kDa alpha subunit, a 58-kDa beta subunit, and a 23-kDa gamma subunit. The electronic spectrum of dithionite-reduced, purified NR displayed peaks at 424.6, 527, and 557 nm, indicative of the presence of a cytochrome b, an interpretation consistent with the pyridine hemochrome spectrum formed. Analyses revealed a molybdenum-heme-non-heme iron ratio of 1:1:8 for the NR and the presence of molybdopterin. Electron paramagnetic resonance (EPR) signals characteristic of iron-sulfur centers were detected at low temperature. EPR also revealed a minor signal centered in the g = 2 region of the spectra. Upon reduction with dithionite, the enzyme displayed signals at g = 2.064, 2.026, 1.906, and 1.888, indicative of the presence of low-potential iron-sulfur centers, which resolve most probably as two [4Fe-4S]+1 clusters. With menadiol as the substrate for nitrate reduction, the Km for nitrate was 50-fold less than that seen when MVH was the electron donor. The cytochrome b557-containing enzyme from B. halodenitrificans is characterized as a menaquinol-nitrate:oxidoreductase.  相似文献   

13.
14.
Atovaquone is an antiparasitic drug that selectively inhibits electron transport through the parasite mitochondrial cytochrome bc1 complex and collapses the mitochondrial membrane potential at concentrations far lower than those at which the mammalian system is affected. Because this molecule represents a new class of antimicrobial agents, we seek a deeper understanding of its mode of action. To that end, we employed site-directed mutagenesis of a bacterial cytochrome b, combined with biophysical and biochemical measurements. A large scale domain movement involving the iron-sulfur protein subunit is required for electron transfer from cytochrome b-bound ubihydroquinone to cytochrome c1 of the cytochrome bc1 complex. Here, we show that atovaquone blocks this domain movement by locking the iron-sulfur subunit in its cytochrome b-binding conformation. Based on our malaria atovaquone resistance data, a series of cytochrome b mutants was produced that were predicted to have either enhanced or reduced sensitivity to atovaquone. Mutations altering the bacterial cytochrome b at its ef loop to more closely resemble Plasmodium cytochrome b increased the sensitivity of the cytochrome bc1 complex to atovaquone. A mutation within the ef loop that is associated with resistant malaria parasites rendered the complex resistant to atovaquone, thereby providing direct proof that the mutation causes atovaquone resistance. This mutation resulted in a 10-fold reduction in the in vitro activity of the cytochrome bc1 complex, suggesting that it may exert a cost on efficiency of the cytochrome bc1 complex.  相似文献   

15.
Sulfate-reducing organisms use sulfate as an electron acceptor in an anaerobic respiratory process. Despite their ubiquitous occurrence, sulfate respiration is still poorly characterized. Genome analysis of sulfate-reducing organisms sequenced to date permitted the identification of only two strictly conserved membrane complexes. We report here the purification and characterization of one of these complexes, DsrMKJOP, from Desulfovibrio desulfuricans ATCC 27774. The complex has hemes of the c and b types and several iron-sulfur centers. The corresponding genes in the genome of Desulfovibrio vulgaris were analyzed. dsrM encodes an integral membrane cytochrome b; dsrK encodes a protein homologous to the HdrD subunit of heterodisulfide reductase; dsrJ encodes a triheme periplasmic cytochrome c; dsrO encodes a periplasmic FeS protein; and dsrM encodes another integral membrane protein. Sequence analysis and EPR studies indicate that DsrJ belongs to a novel family of multiheme cytochromes c and that its three hemes have different types of coordination, one bis-His, one His/Met, and the third a very unusual His/Cys coordination. The His/Cys-coordinated heme is only partially reduced by dithionite. About 40% of the hemes are reduced by menadiol, but no reduction is observed upon treatment with H2 and hydrogenase, irrespective of the presence of cytochrome c3. The aerobically isolated Dsr complex displays an EPR signal with similar characteristics to the catalytic [4Fe-4S]3+ species observed in heterodisulfide reductases. Further five different [4Fe-4S](2+/1+) centers are observed during a redox titration followed by EPR. The role of the DsrMKJOP complex in the sulfate respiratory chain of Desulfovibrio spp. is discussed.  相似文献   

16.
The cytochrome bc1 complex from bovine heart mitochondria is a multi-functional enzyme complex. In addition to electron and proton transfer activity, the complex also processes an activatable peptidase activity and a superoxide generating activity. The crystal structure of the complex exists as a closely interacting functional dimer. There are 13 transmembrane helices in each monomer, eight of which belong to cytochrome b, and five of which belong to cytochrome c1, Rieske iron-sulfur protein (ISP), subunits 7, 10 and 11, one each. The distances of 21 A between bL heme and bH heme and of 27 A between bL heme and the iron-sulfur cluster (FeS), accommodate well the observed fast electron transfers between the involved redox centers. However, the distance of 31 A between heme c1 and FeS, makes it difficult to explain the high electron transfer rate between them. 3D structural analyses of the bc1 complexes co-crystallized with the Qu site inhibitors suggest that the extramembrane domain of the ISP may undergo substantial movement during the catalytic cycle of the complex. This suggestion is further supported by the decreased in the cytochrome bc1 complex activity and the increased in activation energy for mutants with increased rigidity in the neck region of ISP.  相似文献   

17.
NADH treatment of complex I at pH 7–8 results in the appearance of electron paramagnetic resonance (epr) signals at x band due to reduced ironsulfur centers 1, 2, 3 and 4, while NADPH treatment gives rise to the appearance of signals due to centers 2 and 3. Similar results are obtained with complex I preparations in which transhydrogenase activity from NADPH to NAD has been >95% inhibited by treatment of the complex with trypsin. At pH 6.5 and in the presence of rotenone, addition of NADPH to complex I or transhydrogenase-inhibited complex I results in partial reduction of iron-sulfur center 1 as well. These and other experiments with reduced 3-acetylpyridine adenine dinucleotide and NADPH + NAD as substrates have suggested that the differences in the reduction of complex I iron-sulfur centers by the above nucleotides are essentially quantitative and related to (a) the dehydrogenation rate of the nucleotides, and (b) autoxidation of complex I components under the epr experimental conditions.  相似文献   

18.
Several iron-sulfur centers in the NADH-ubiquinone segment of the respiratory chain in pigeon heart mitochondria and in submitochondrial particles were analyzed by the combined application of cryogenic EPR (between 30 and 4.2 degrees K) and potentiometric titration. Center N-1 (iron-sulfur centers associated with NADH dehydrogenase are designated with the prefix "N") resolves into two single electron titratins with EM7.2 values of minus 380 plus or minus 20 mV and minus 240 plus or minus 20 mV (Centers N-1a and N-1b, respectively). Center N-1a exhibits an EPR spectrum of nearly axial symmetry with g parellel = 2.03, g = 1.94, while that of Center N-1b shows more apparent rhombic symmetry with gz = 2.03, gy = 1.94 and gx = 1.91. Center N-2 also reveals EPR signals of axial symmetry at g parallel = 2.05 and g = 1.93 and its principal signal overlaps with those of Centers N-1a and N-1b. Center N-2 can be easily resolved from N-1a and N-1b because of its high EM7.2 value (minus 20 plus or minus 20 mV). Resolution of Centers N-3 and N-4 was achieved potentiometrically in submitochondrial particles. The component with EM7.2 = minus 240 plus or minus 20 mV is defined as Center N-3 (gz = 2.10, (gz = 2.10, (gy = 1.93?), GX = 1.87); the minus 405 plus or minus 20 mV component as Center N-4 (gz = 2.11, (gy = 1.93?), gx = 1.88). At temperatures close to 4.2 degrees K, EPR signals at g = 2.11, 2.06, 2.03, 1.93, 1.90 and 1.88 titrate with EM7.2 = minus 260 plus or minus 20 mV. The multiplicity of peaks suggests the presence of at least two different iron-sulfur centers having similar EM7.2 values (minus 260 plus or minus 20 mV); HENCE, tentatively assigned as N-5 and N-6. Consistent with the individual EM7.2 values obtained, addition of succinate results in the partial reduction of Center N-2, but does not reduce any other centers in the NADH-ubiquinone segment of the respiratory chain. Centers N-2, N-1b, N-3, N-5 and N-6 become almost completely reduced in the presence of NADH, while Centers N-1a and N-4 are only slightly reduced in pigeon heart submitochondrial particles. In pigeon heart mitochondria, the EM7.2 of Center N-4 lies much closer to that of Center N-3, so that resolution of the Center N-3 and N-4 spectra is not feasible in mitochondrial preparations. EM7.2 values and EPR lineshapes for the other iron-sulfur centers of the NADH-ubiquinone segment in the respiratory chain of intact mitochondria are similar to those obtained in submitochondrial particle preparations. Thus, it can be concluded that, in intact pigeon heart mitochondria, at least five iron-sulfur centers show EM7.2 values around minus 250 mV; Center N-2 exhibits a high EM7.2 (minus 20 plus or minus 20 mV), while Center N-1a shows a very low EM7.2 (minus 380 plus or minus 20 mV).  相似文献   

19.
The green sulfur bacterium Chlorobium vibrioforme was cultured in the presence of ethylene to selectively inhibit the synthesis of the chlorosome antenna BChl d. Use of these cells as starting material simplified the isolation of a photoactive antenna-depleted membrane fraction without the use of high concentrations of detergents. The preparation had a BChl alpha/P840 of 50, and the spectral properties were similar to those of preparations isolated from cells grown with a normal complement of chlorosomes. The membrane preparation was active in NADP+ photoreduction. This indicated that the fraction contained reaction centers with complete electron-transfer sequences which were then characterized further by flash kinetic spectrophotometry and EPR. We confirmed that cytochrome c553 is the endogenous donor to P840+, and at room temperature we observed a recombination reaction between the reduced terminal acceptor and P840+ with a t1/2 = 7 ms. Oxidative degradation of iron-sulfur centers using low concentrations of chaotropic salts introduced a faster recombination reaction of t1/2 = 50 microseconds which was lost at higher concentrations of chaotrope, indicating the participation of another iron-sulfur redox center earlier than the terminal acceptor. Cluster insertion using ferric chloride and sodium sulfide in the presence of 2-mercaptoethanol restored both the 50-microseconds and 7-ms recombination reactions, allowing definitive assignments of these centers as iron-sulfur centers. Following the suggestion of Nitschke et al. [(1990) Biochemistry 29, 3834-3842], we associate these two kinetic phases to back-reactions between P840+ and iron-sulfur centers FX and FAFB, respectively. The iron-sulfur cluster degradation and reconstitution protocols also led to inhibition and restoration of NADP+ photoreduction by the membrane preparation, providing unequivocal evidence for the function of the centers FX and FAFB in the physiological electron-transfer sequence on the acceptor side of the Chlorobium reaction center. At 77 K we observed a recombination reaction of t1/2 = 20 ms that we suggest occurs between Fx- and P840+. Degradation of the iron-sulfur clusters resulted in replacement of the 20-ms phase with a faster reaction of t1/2 = 80 microseconds that was most likely a recombination between the early acceptor A1- and P840+ or decay of 3P840. Analysis of the iron-sulfur centers in the preparation by EPR at cryogenic temperature supports the optical measurements. EPR signals originating from the terminal acceptor(s) were not observed following treatment of the membrane preparation by chaotropes, and a modified signal was restored following cluster reinsertion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
In cultured macrophages (J 774 line) a decrease in iron-sulfur centers (ISC) was not observed after 5 min treatment with nitric oxide (NO) (10(-7) M NO/10(7) cells). The content of these centers was measured by electron spin resonance (ESR) spectroscopy at 16-60 K. However, the appearance of a characteristic ESR signal at g(av) = 2.03 indicated the formation of dinitrosyl iron complex (DNIC) in these cells. These findings suggest that loosely bound non-heme iron (free iron) but not iron from ISC is mainly involved in DNIC formation. ISC might release iron for DNIC formation after their destruction induced by the products of NO oxidation (NO2, N2O3, etc).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号