首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Genetic strategies that reduce or block pathogen transmission by mosquitoes are being investigated as a means to augment current control measures. Strategies of vector suppression and replacement are based upon intracellular Wolbachia bacteria, which occur naturally in many insect populations. Maternally inherited Wolbachia have evolved diverse mechanisms to manipulate host insect reproduction and promote infection invasion. One mechanism is cytoplasmic incompatibility (CI) through which Wolbachia promotes infection spread by effectively sterilizing uninfected females. In a prior field test, releases of Wolbachia-infected males were used to suppress a field population of Culex pipiens. An additional strategy would employ Wolbachia as a vehicle to drive desired transgenes into vector populations (population replacement). Wolbachia-based population suppression and population replacement strategies require an ability to generate artificial Wolbachia associations in mosquitoes. Here, we demonstrate a technique for transferring Wolbachia (transfection) in a medically important mosquito species: Aedes albopictus (Asian tiger mosquito). Microinjection was used to transfer embryo cytoplasm from a double-infected Ae. albopictus line into an aposymbiotic line. The resulting mosquito line is single-infected with the wAlbB Wolbachia type. The artificially generated infection type is not known to occur naturally and displays a new CI crossing type and the first known example of bidirectional CI in Aedes mosquitoes. We discuss the results in relation to applied mosquito control strategies and the evolution of Wolbachia infections in Ae. albopictus.  相似文献   

2.
Certain strains of the endosymbiont Wolbachia have the potential to lower the vectorial capacity of mosquito populations and assist in controlling a number of mosquito-borne diseases. An important consideration when introducing Wolbachia-carrying mosquitoes into natural populations is the minimisation of any transient increase in disease risk or biting nuisance. This may be achieved by predominantly releasing male mosquitoes. To explore this, we use a sex-structured model of Wolbachia-mosquito interactions. We first show that Wolbachia spread can be initiated with very few infected females provided the infection frequency in males exceeds a threshold. We then consider realistic introduction scenarios involving the release of batches of infected mosquitoes, incorporating seasonal fluctuations in population size. For a range of assumptions about mosquito population dynamics we find that male-biased releases allow the infection to spread after the introduction of low numbers of females, many fewer than with equal sex-ratio releases. We extend the model to estimate the transmission rate of a mosquito-borne pathogen over the course of Wolbachia establishment. For a range of release strategies we demonstrate that male-biased release of Wolbachia-infected mosquitoes can cause substantial transmission reductions without transiently increasing disease risk. The results show the importance of including mosquito population dynamics in studying Wolbachia spread and that male-biased releases can be an effective and safe way of rapidly establishing the symbiont in mosquito populations.  相似文献   

3.
Kang L  Ma X  Cai L  Liao S  Sun L  Zhu H  Chen X  Shen D  Zhao S  Li C 《Heredity》2003,90(1):71-76
Wolbachia are maternally inherited, intracellular alpha-proteobacteria that infect a wide range of arthropods. They manipulate the reproduction of hosts to facilitate their spread into host populations, through ways such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. The influence of Wolbachia infection on host populations has attracted considerable interest in their possible role in speciation and as a potential agent of biological control. In this study, we used both microinjection and nested PCR to show that the Wolbachia naturally infecting Drosophila simulans can be transferred into a naturally Wolbachia-infected strain of the small brown planthopper Laodelphax striatellus, with up to 30% superinfection frequency in the F(12) generation. The superinfected males of L. striatellus showed unidirectional CI when mated with the original single-infected females, while superinfected females of L. striatellus were compatible with superinfected or single-infected males. These results are, to our knowledge, the first to establish a superinfected horizontal transfer route for Wolbachia between phylogenetically distant insects. The segregation of Wolbachia from superinfected L. striatellus was observed during the spreading process, which suggests that Wolbachia could adapt to a phylogenetically distant host with increased infection frequency in the new host population; however, it would take a long time to establish a high-frequency superinfection line. This study implies a novel way to generate insect lines capable of driving desired genes into Wolbachia-infected populations to start population replacement.  相似文献   

4.
Wolbachia symbionts hold theoretical promise as a way to drive transgenes into insect vector populations for disease prevention. For simplicity, current models of Wolbachia dynamics and spread ignore ecologically complex factors such as the age structure of vector populations and overlapping vector generations. We developed a model including these factors to assess their impact on the process of Wolbachia spread into populations of three mosquito species (Anopheles gambiae, Aedes aegypti and Culex pipiens). Depending on the mosquito species, Wolbachia parameters, released mosquito life stage and initial age structure of the target population, the number of Wolbachia-infected mosquitoes that we predict would need to be released ranged from less than the threshold calculated by the simple model to a 10-30-fold increase. Transgenic releases into age-structured populations, which is an expectation for wild mosquitoes, will be difficult and depending on the circumstances may not be economically or logistically feasible due to the large number of infected mosquitoes that must be released. Our results support the perspective that understanding ecological factors is critical for designing transgenic vector-borne disease control strategies.  相似文献   

5.
The outcome of microbial infection of insects is dependent not only on interactions between the host and pathogen, but also on the interactions between microbes that co-infect the host. Recently the maternally inherited endosymbiotic bacteria Wolbachia has been shown to protect insects from a range of microbial and eukaryotic pathogens. Mosquitoes experimentally infected with Wolbachia have upregulated immune responses and are protected from a number of pathogens including viruses, bacteria, Plasmodium and filarial nematodes. It has been hypothesised that immune upregulation underpins Wolbachia-mediated protection. Drosophila is a strong model for understanding host-Wolbachia-pathogen interactions. Wolbachia-mediated antiviral protection in Drosophila has been demonstrated for a number of different Wolbachia strains. In this study we investigate whether Wolbachia-infected flies are also protected against pathogenic bacteria. Drosophila simulans lines infected with five different Wolbachia strains were challenged with the pathogenic bacteria Pseudomonas aeruginosa PA01, Serratia marcescens and Erwinia carotovora and mortality compared to paired lines without Wolbachia. No difference in mortality was observed in the flies with or without Wolbachia. Similarly no antibacterial protection was observed for D. melanogaster infected with Wolbachia. Interestingly, D. melanogaster Oregon RC flies which are naturally infected with Wolbachia showed no upregulation of the antibacterial immune genes TepIV, Defensin, Diptericin B, PGRP-SD, Cecropin A1 and Attacin D compared to paired flies without Wolbachia. Taken together these results indicate that Wolbachia-mediated antibacterial protection is not ubiquitous in insects and furthermore that the mechanisms of antibacterial and antiviral protection are independent. We suggest that the immune priming and antibacterial protection observed in Wolbachia-infected mosquitoes may be a consequence of the recent artificial introduction of the symbiont into insects that normally do not carry Wolbachia and that antibacterial protection is unlikely to be found in insects carrying long-term Wolbachia infections.  相似文献   

6.
7.
Endosymbiotic Wolbachia bacteria are potent modulators of pathogen infection and transmission in multiple naturally and artificially infected insect species, including important vectors of human pathogens. Anopheles mosquitoes are naturally uninfected with Wolbachia, and stable artificial infections have not yet succeeded in this genus. Recent techniques have enabled establishment of somatic Wolbachia infections in Anopheles. Here, we characterize somatic infections of two diverse Wolbachia strains (wMelPop and wAlbB) in Anopheles gambiae, the major vector of human malaria. After infection, wMelPop disseminates widely in the mosquito, infecting the fat body, head, sensory organs and other tissues but is notably absent from the midgut and ovaries. Wolbachia initially induces the mosquito immune system, coincident with initial clearing of the infection, but then suppresses expression of immune genes, coincident with Wolbachia replication in the mosquito. Both wMelPop and wAlbB significantly inhibit Plasmodium falciparum oocyst levels in the mosquito midgut. Although not virulent in non-bloodfed mosquitoes, wMelPop exhibits a novel phenotype and is extremely virulent for approximately 12-24 hours post-bloodmeal, after which surviving mosquitoes exhibit similar mortality trajectories to control mosquitoes. The data suggest that if stable transinfections act in a similar manner to somatic infections, Wolbachia could potentially be used as part of a strategy to control the Anopheles mosquitoes that transmit malaria.  相似文献   

8.
Bacteriophages of Wolbachia bacteria have been proposed as a potential transformation tool for genetically modifying mosquito vectors. In this study, we report the presence of the WO-B class of Wolbachia-associated phages among natural populations of several mosquito hosts. Eighty-eight percent (22/25) of Wolbachia-infected mosquito species surveyed were found to contain WO-B phages. WO-B phage orf7 sequence analysis suggested that a single strain of WO-B phage was found in most singly (23/24) or doubly (1/1) Wolbachia-infected mosquitoes. However, the single Wolbachia strain infecting Aedes perplexus was found to harbour at least two different WO-B phages. Phylogenetic analysis suggested that horizontal transmission of WO-B phages has occurred on an evolutionary scale between the Wolbachia residing in mosquitoes. On an ecological scale, a low trend of co-transmission occurred among specific WO-B phages within Wolbachia of each mosquito species. Assessment of the density of WO-B phage by real-time quantitative polymerase chain reaction (RTQ-PCR) revealed an average relative density of 7.76 x 10(5)+/- 1.61 x 10(5) orf7 copies per individual mosquito for a single Wolbachia strain infecting mosquitoes, but a threefold higher density in the doubly Wolbachia-infected Aedes albopictus. However, the average combined density of WO-B phage(s) did not correlate with that of their Wolbachia hosts, which varied in different mosquito species. We also confirmed the presence of WO-B-like virus particles in the laboratory colony of Ae. albopictus (KLPP) morphologically, by transmission electron microscopy (TEM). The viral-like particles were detected after purification and filtration of Ae. albopictus ovary extract, suggesting that at least one WO-B-like phage is active (temperate) within the Wolbachia of this mosquito vector. Nevertheless, the idea of utilizing these bacteriophages as transformation vectors still needs more investigation and is likely to be unfeasible.  相似文献   

9.
Mosquitoes transmit a diverse group of human flaviviruses including West Nile, dengue, yellow fever, and Zika viruses. Mosquitoes are also naturally infected with insect‐specific flaviviruses (ISFs), a subgroup of the family not capable of infecting vertebrates. Although ISFs are not medically important, they are capable of altering the mosquito's susceptibility to flaviviruses and may alter host fitness. Wolbachia is an endosymbiotic bacterium of insects that when present in mosquitoes limits the replication of co‐infecting pathogens, including flaviviruses. Artificially created Wolbachia‐infected Aedes aegypti mosquitoes are being released into the wild in a series of trials around the globe with the hope of interrupting dengue and Zika virus transmission from mosquitoes to humans. Our work investigated the effect of Wolbachia on ISF infection in wild‐caught Ae. aegypti mosquitoes from field release zones. All field mosquitoes were screened for the presence of ISFs using general degenerate flavivirus primers and their PCR amplicons sequenced. ISFs were found to be common and widely distributed in Ae. aegypti populations. Field mosquitoes consistently had higher ISF infection rates and viral loads compared to laboratory colony material indicating that environmental conditions may modulate ISF infection in Ae. aegypti. Surprisingly, higher ISF infection rates and loads were found in Wolbachia‐infected mosquitoes compared to the Wolbachia‐free mosquitoes. Our findings demonstrate that the symbiont is capable of manipulating the mosquito virome and that Wolbachia‐mediated viral inhibition is not universal for flaviviruses. This may have implications for the Wolbachia‐based DENV control strategy if ISFs confer fitness effects or alter mosquito susceptibility to other flaviviruses.  相似文献   

10.
Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23) and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.  相似文献   

11.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

12.
The mosquito Aedes pseudoscutellaris (Theobald), a member of the Aedes (Stegomyia) scutellaris complex (Diptera: Culicidae), is an important vector of subperiodic Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae), causing human lymphatic filariasis, on South Pacific islands. Maternal inheritance of filarial susceptibility in the complex has previously been asserted, and larval tetracycline treatment reduced susceptibility; the maternally inherited Wolbachia in these mosquitoes were suggested to be responsible. To investigate the relationship of these two factors, we eliminated Wolbachia from a strain of Ae. pseudoscutellaris by tetracycline treatment, and tested filarial susceptibility of the adult female mosquitoes using Brugia pahangi (Edeson & Buckley). Filarial susceptibility was not significantly different in Wolbachia-free and infected lines of Ae. pseudoscutellaris, suggesting that the Wolbachia in these mosquitoes do not influence vector competence. Crosses between Wolbachia-infected males and uninfected females of Ae. pseudoscutellaris showed cytoplasmic incompatibility (CI), i.e. no eggs hatched, unaffected by larval crowding or restricted nutrient availability, whereas these factors are known to affect CI in Drosophila simulans. Reciprocal crosses between Ae. pseudoscutellaris and Ae. katherinensis Woodhill produced no progeny, even when both parents were Wolbachia-free, suggesting that nuclear factors are responsible for this interspecific sterility.  相似文献   

13.
14.
Wolbachia are a group of maternally transmitted obligatory intracellular alpha-proteobacteria that infect a wide range of arthropod and nematode species. Wolbachia infection in Drosophila in most cases is associated with the induction of cytoplasmic incompatibility (CI), manifested as embryonic lethality of offspring in a cross between infected males and uninfected females. While the molecular basis of CI is still unknown, it has been suggested that two bacterial functions are involved: mod (for modification) modifies the sperm during spermatogenesis and resc (for rescue) acts in the female germline and/or in early embryos, neutralizing the modification. There is considerable variation in the level of incompatibility in different Wolbachia/host interactions. We examine the relationship between the levels of CI in a number of naturally infected and transinfected Drosophila hosts and the percentage of Wolbachia-infected sperm cysts. Our results indicate the presence of two main groups of Drosophila-Wolbachia associations: group I, which exhibits a positive correlation between CI levels and the percentage of infected sperm cysts (mod(+) phenotype), and group II, which does not express CI (mod(-) phenotype) irrespective of the infection status of the sperm cysts. Group II can be further divided into two subgroups: The first one contains associations with high numbers of heavily Wolbachia-infected sperm cysts while in the second one, Wolbachia is rarely detected in sperm cysts, being mostly present in somatic cells. We conclude that there are three requirements for the expression of CI in a host-Wolbachia association: (a) Wolbachia has to be able to modify sperm (mod(+) genotype), (b) Wolbachia has to infect sperm cysts, and (c) Wolbachia has to be harbored by a permissive host.  相似文献   

15.
Wolbachia is a globally distributed bacterial endosymbiont present in arthropods and nematodes. The advent of sensitive PCR-based approaches has greatly facilitated the identification of Wolbachia-infected individuals and analysis of population infection levels. Here, a complementary visual fluorescence-based Wolbachia screening approach is described. Through the use of the fluorescent dye Syto-11, Wolbachia can be efficiently detected in various Drosophila tissues, including ovaries. Syto-11 also stains Wolbachia in other insects. Because Wolbachia is inherited through the maternal germ line, bacteria reside in the ovaries of flies in infected populations. An advantage of this staining approach is that it informs about Wolbachia titer as well as its tissue and cellular distribution. Using this method, the infection status of insect populations in two central California locations was determined, and variants with unusually low or high Wolbachia titers were isolated. In addition, a variant with ovarioles containing both infected and uninfected egg chambers was identified. Syto-11 staining of Cardinium- and Spiroplasma-infected insects was also analyzed.  相似文献   

16.
Obligate, intracellular bacteria of the genus Wolbachia often behave as reproductive parasites by manipulating host reproduction to enhance their vertical transmission. One of these reproductive manipulations, cytoplasmic incompatibility, causes a reduction in egg-hatch rate in crosses between individuals with differing infections. Applied strategies based upon cytoplasmic incompatibility have been proposed for both the suppression and replacement of host populations. As Wolbachia infections occur within a broad range of invertebrates, these strategies are potentially applicable to a variety of medically and economically important insects. Here, we examine the interaction between Wolbachia infection frequency and host population size. We use a model to describe natural invasions of Wolbachia infections, artificial releases of infected hosts and releases of sterile males, as part of a traditional sterile insect technique programme. Model simulations demonstrate the importance of understanding the reproductive rate and intraspecific competition type of the targeted population, showing that releases of sterile or incompatible individuals may cause an undesired increase in the adult number. In addition, the model suggests a novel applied strategy that employs Wolbachia infections to suppress host populations. Releases of Wolbachia-infected hosts can be used to sustain artificially an unstable coexistence of multiple incompatible infections within a host population, allowing the host population size to be reduced, maintained at low levels, or eliminated.  相似文献   

17.
A virulent strain of Wolbachia has recently been identified in Drosophila that drastically reduces adult lifespan. It has been proposed that this phenotype might be introduced into insect disease vector populations to reduce pathogen transmission. Here we model the requirements for spread of such an agent and the associated reduction in disease transmission. First, a simulation of mosquito population age structure was used to describe the age distribution of mosquitoes transmitting dengue virus. Second, given varying levels of cytoplasmic incompatibility and fecundity effect, the maximum possible longevity reduction that would allow Wolbachia to invade was obtained. Finally, the two models were combined to estimate the reduction in disease transmission according to different introduction frequencies. With strong CI and limited effect of fecundity, an introduction of Wolbachia with an initial frequency of 0.4 could result in a 60-80% reduction of transmitting mosquitoes. Greater reductions are possible at higher initial release rates.  相似文献   

18.
Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects.  相似文献   

19.
植物病毒病是危害我国蔬菜生产的第一大病害,而烟粉虱Bemisia tabaci Gennadius、蓟马和蚜虫等小型昆虫是蔬菜病毒病的主要传播媒介.虫传病毒病害的防控策略复杂且难度大,目前生产上主要依赖化学农药防治介体昆虫,预防与控制蔬菜病毒病.种植户化学杀虫药剂的不合理使用、甚至滥用,导致媒介昆虫抗药性、杀虫剂污染与...  相似文献   

20.
Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号