首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new adduct N6-(2-carboxyethyl)adenine (N6-CEA) was prepared from 1-(2-carboxyethyl)adenine (1-CEA) by base catalyzed (Dimroth) rearrangement of 1-CEA. The structure of N6-CEA was assigned on the basis of UV spectra and electron impact and isobutane chemical ionization mass spectra. When the carcinogen beta-propiolactone was reacted in vitro with calf thymus DNA, 1-CEA but not N6-CEA was detected on paper chromatograms following acid hydrolysis of the DNA. When BPL-reacted single-stranded DNA was incubated at pH 11.7 (37 degrees C, 18 h) prior to acid hydrolysis, it was found that 1-CEA was completely converted to N6-CEA in DNA by Dimroth rearrangement, whereas no conversion occurred at pH 7.5. The extent of Dimroth rearrangement at various pHs and temperatures was determined for 1-CEA, 1-methyladenine (1-MeA), 1-(2-carboxyethyl)-deoxyadenosine-5'-monophosphoric acid (1-CEdAdo5'P) and the phosphodiester 5'-O-(2-carboxyethyl)phosphono-1-(2-carboxyethyl)deoxyadenosine (1-CE-Ado-5'-P-CE).  相似文献   

2.
To clarify the action of a novel endothelin-1 with 31 amino acids, ET-1 (1-31), on fetal circulation, its vasoconstrictive activity on human umbilical and uterine arteries was investigated in comparison with that of a conventional ET-1 (1-21). UFER micro-easy magnus was used for determination of vasoconstriction. The contraction of umbilical artery by KCl was significantly weaker than that of the uterine artery. In ETs, constriction by KCl was set as control, and the rate of constriction of uterine and umbilical arteries was used for comparison. The constriction of human uterine artery induced by ET-1 (1-31) was also significantly weaker than that by ET-1 (1-21). On the contrary, ET-1 (1-31) was a potent constrictor on the umbilical artery equally to ET-1 (1-21). The present study is the first to demonstrate that ET-1 (1-31) has a contractile activity on human vessels. Furthermore, the regulatory mechanism on constriction of umbilical artery is different from that observed in a systemic vessel, indicating a particularly important role of ET-1 (1-31) in fetal circulation.  相似文献   

3.
Using a specific 13C NMR localization method, 13C label incorporation into the glycogen C1 resonance was measured while infusing [1-(13)C]glucose in intact rats. The maximal concentration of [1-(13)C]glycogen was 5.1 +/- 0.6 micromol g(-1) (mean +/- SE, n = 8). During the first 60 min of acute hyperglycemia, the rate of 13C label incorporation (synthase flux) was 2.3 +/- 0.7 micromol g(-1) h(-1) (mean +/- SE, n = 9 rats), which was higher (p < 0.01) than the rate of 0.49 +/- 0.14 micromol g(-1) h(-1) measured > or = 2 h later. To assess whether the incorporation of 13C label was due to turnover or net synthesis, the infusion was continued in seven rats with unlabeled glucose. The rate of 13C label decline (phosphorylase flux) was lower (0.33 +/- 0.10 micromol g(-1) h(-1)) than the initial rate of label incorporation (p < 0.01) and appeared to be independent of the duration of the preceding infusion of [1-(13)C]glucose (p > 0.05 for correlation). The results implied that net glycogen synthesis of approximately 3 micromol g(-1) had occurred, similar to previous reports. When infusing unlabeled glucose before [1-(13)C]glucose in three studies, the rate of glycogen C1 accumulation was 0.46 +/- 0.08 micromol g(-1) h(-1). The results suggest that steady-state glycogen turnover rates during hyperglycemia are approximately 1% of glucose consumption.  相似文献   

4.
The quinones duroquinone (DQ) and coenzyme Q(1) (CoQ(1)) and quinone reductase inhibitors have been used to identify reductases involved in quinone reduction on passage through the pulmonary circulation. In perfused rat lung, NAD(P)H:quinone oxidoreductase 1 (NQO1) was identified as the predominant DQ reductase and NQO1 and mitochondrial complex I as the CoQ(1) reductases. Since inhibitors have nonspecific effects, the goal was to use Nqo1-null (NQO1(-)/(-)) mice to evaluate DQ as an NQO1 probe in the lung. Lung homogenate cytosol NQO1 activities were 97 ± 11, 54 ± 6, and 5 ± 1 (SE) nmol dichlorophenolindophenol reduced·min(-1)·mg protein(-1) for NQO1(+/+), NQO1(+/-), and NQO1(-/-) lungs, respectively. Intact lung quinone reduction was evaluated by infusion of DQ (50 μM) or CoQ(1) (60 μM) into the pulmonary arterial inflow of the isolated perfused lung and measurement of pulmonary venous effluent hydroquinone (DQH(2) or CoQ(1)H(2)). DQH(2) efflux rates for NQO1(+/+), NQO1(+/-), and NQO1(-/-) lungs were 0.65 ± 0.08, 0.45 ± 0.04, and 0.13 ± 0.05 (SE) μmol·min(-1)·g dry lung(-1), respectively. DQ reduction in NQO1(+/+) lungs was inhibited by 90 ± 4% with dicumarol; there was no inhibition in NQO1(-/-) lungs. There was no significant difference in CoQ(1)H(2) efflux rates for NQO1(+/+) and NQO1(-/-) lungs. Differences in DQ reduction were not due to differences in lung dry weights, wet-to-dry weight ratios, perfusion pressures, perfused surface areas, or total DQ recoveries. The data provide genetic evidence implicating DQ as a specific NQO1 probe in the perfused rodent lung.  相似文献   

5.
The association of native C1 with physiologically relevant proteins was studied by ultracentrifugation. 125I-C1 was centrifuged through numerous sucrose density gradients, each of which contained a different concentration of monomeric (19S) IgM throughout the gradient. The s-rate of C1 (16S) increased with increasing IgM input to a maximum of 32S. In the absence of C1q, the C1r2s2 subunit did not bind to the Ig. In gradients containing physiologic concentrations of IgM (1.3 mg/ml) at 0.14 M ionic strength, the observed s-rate of C1 was 21S. In the presence of 13 mg/ml IgG, C1 sedimented with an s-rate of 19S. Thus, under physiologic conditions, a significant fraction of native C1 is reversibly bound to monomeric Ig. SDS-PAGE analyses show that this interaction does not lead to C1 activation. The interaction of native C1 with C1 inhibitor (C1-In) was studied by ultracentrifugation at physiologic ionic strength. Purified 125I-C1-In alone sedimented with an s-rate of 4S. However in the presence of excess native C1, one-third of the C1-In co-sedimented with C1 at a 16S position. For these studies, 100 microM nitrophenylguanidinobenzoate (NPGB) was present throughout the sucrose density gradient to prevent C1 activation during centrifugation. As the concentration of NPGB was increased, the percent of 125I-C1-In at 16S decreased, indicating that C1-In was binding (reversibly) to the C1 active site region(s), which is at least partially accessible in uncleaved C1. In controls, when NPGB was omitted or activated C1 was used, the s-rate of 125I-C1-In was only 12S due to the release of C1rC1s(C1-In)2 from activated C1. Thus, under physiologic conditions native C1 is reversibly bound to C1-In.  相似文献   

6.
When rabbit C1 purified by affinity chromatography on IgG-Sepharose 6B was chromatographed on DEAE-cellulose in the presence of ethylenediaminetetraacetate, C1s was isolated as two forms, C1s(I) and C1s(II), having different molecular weights. On the other hand, incubation of the C1 with soybean trypsin inhibitor before the chromatography resulted in the isolation of C1s(I) alone, indicating that, during the purification, C1s(II) was derived from C1s(I) by proteolytic cleavage of C1s(I) by a contaminating protease, probably plasmin [EC 3.4.21.7]. In fact, C1s(I) was completely converted to C1s(II) or a C1s(II)-like fragment by highly purified plasmin. Analysis of the polypeptide chain structures revealed that C1s(I), which consisted of H and L chains with molecular weights of 70,000 and 36,000, respectively, was converted to C1s(II) by cleavage of the H chain, since C1s(II) consisted of two chains each with a molecular weight of 37,000. This conversion proceeded without any alteration in C1 esterase activity, but was accompanied by loss of the ability to form C1r-C1s complex.  相似文献   

7.
Eukaryotic elongation factor 1alpha (eEF1A) can be post-translationally modified by the addition of phosphorylglycerylethanolamine (PGE). [(14)C]Ethanolamine was incorporated into the PGE modification, and with carrot (Daucus carota L.) suspension culture cells, eEF1A was the only protein that incorporated detectable quantities of [(14)C]ethanolamine (Ransom et al., 1998). When 1 mM CaCl(2) was added to microsomes containing [(14)C]ethanolamine-labeled eEF1A ([(14)C]et-eEF1A), there was a 60% decrease in the amount of [(14)C]et-eEF1A recovered after 10 min. The loss of endogenous [(14)C]et-eEF1A was prevented by adding EGTA. Recombinant eEF1A, which did not contain the PGE modification, also was degraded by microsomes in a Ca(2+)-regulated manner, indicating that PGE modification was not necessary for proteolysis; however, it enabled us to quantify enodgenous eEF1A. By monitoring [(14)C]et-eEF1A, we found that treatment with phospholipase D or C, but not phospholipase A(2), resulted in a decrease in [(14)C]et-eEF1A from carrot microsomes. The fact that there was no loss of [(14)C]et-eEF1A with phospholipase A(2) treatment even in the presence of 1 mM Ca(2+) suggested that the loss of membrane lipids was not essential for eEF1A proteolysis and that lysolipids or fatty acids decreased proteolysis. At micromolar Ca(2+) concentrations, proteolysis of eEF1A was pH sensitive. When 1 microM CaCl(2) was added at pH 7.2, 35% of [(14)C]et-eEF1A was lost; while at pH 6.8, 10 microM CaCl(2) was required to give a similar loss of protein. These data suggest that eEF1A may be an important downstream target for Ca(2+) and lipid-mediated signal transduction cascades.  相似文献   

8.
Noxa1 was discovered as an activating factor for Nox1, an O(2)(-)-generating enzyme. Subsequent studies have shown that Noxa1 is colocalized with Nox2 in several cell types, including vascular cells. Nox2 activation by Noxa1 has been examined in reconstituted model cells. However, little is known about the kinetic properties of Noxa1 in Nox2 activation. In the present study, we used purified cyt.b(558) (Nox2 plus p22(phox)), Rac(Q61L), and Noxo1 to examine the ability of Noxa1 to activate Nox2. In the pure reconstitution system, Noxa1 activated Nox2 with lower efficiency than p67(phox), a canonical activator of Nox2. The EC(50) value of Noxa1 was considerably higher than that of p67(phox). The V(max) value with Noxa1 and Noxo1 was one-third of that with p67(phox) and p47(phox). The EC(50) value of Noxo1 or Rac(Q61L) was also higher when Noxa1 was used. The affinity of FAD for the oxidase and the stability of the active complex were remarkably low when Noxa1 and Noxo1 were used compared with p67(phox) and p47(phox). The stability was not improved by fusion of Noxa1 with Rac(Q61L). These findings show that Noxa1 has quite different kinetic properties from p67(phox) and suggest that Noxa1 may function as a moderate activator of Nox2.  相似文献   

9.
d-Xylonate was produced from d-xylose using Kluyveromyces lactis strains which expressed the gene for NADP(+)-dependent d-xylose dehydrogenase from Trichoderma reesei (xyd1). Up to 19 ± 2g d-xylonatel(-1) was produced when K. lactis expressing xyd1 was grown on 10.5 gd-galactosel(-1) and 40 g d-xylosel(-1). Intracellular accumulation of d-xylonate (up to ~70 mg [gbiomass](-1)) was observed. d-Xylose was metabolised to d-xylonate, xylitol and biomass. Oxygen could be reduced to 6mmolO(2)l(-1)h(-1) without loss in titre or production rate, but metabolism of d-xylose and xylitol were more efficient when 12 mmolO(2)l(-1)h(-1) were provided. d-Xylose uptake was not affected by deletion of either the d-xylose reductase (XYL1) or a putative xylitol dehydrogenase encoding gene (XYL2) in xyd1 expressing strains. K. lactis xyd1ΔXYL1 did not produce extracellular xylitol and produced more d-xylonate than the xyd1 strain containing the endogenous XYL1. K. lactis xyd1ΔXYL2 produced high concentrations of xylitol and significantly less d-xylonate than the xyd1 strain with the endogenous XYL2.  相似文献   

10.
Nucleo-cytoplasmic translocation of histone H1 during the HeLa cell cycle   总被引:1,自引:0,他引:1  
  相似文献   

11.
The cardiovascular role of angiotensin-(1-7), especially in the functional and metabolic alterations associated with ischemia-reperfusion (IR), is still not clearly defined. Our objective was to evaluate the cardiac effects of angiotensin-(1-7), the receptors involved, and their relationships with NADPH oxidase activation under non-ischemic conditions and, during an ischemia-reperfusion sequence. Isolated perfused rat hearts underwent 45 min of non-ischemic perfusion, or 30 min of global ischemia followed by 30 min of reperfusion. Angiotensin-(1-7) and/or AT1 receptor blocker losartan or angiotensin-(1-7) receptor antagonist (D-Ala7)-angiotensin-(1-7) were perfused. Our results showed that angiotensin-(1-7) was without effect at low concentrations (10(-10) to 10(-7) M). At a pharmacological concentration, 0.5 microM angiotensin-(1-7) induced vasoconstriction, which was antagonised by losartan. After ischemia, we noted a partial recovery of functional parameters, which was not modified by any of the treatments. The expression of AT1 receptor mRNA was increased by ischemia-reperfusion, except in (D-Ala7)-angiotensin-(1-7) treated hearts. Angiotensin-(1-7) further increased the AT1 expression. NADPH oxidase activity was enhanced in 0.5 microM angiotensin-(1-7)-treated hearts subjected to ischemia-reperfusion, this effect was totally reversed by losartan. This is the first time that it has been shown that, in the heart, angiotensin-(1-7) at pharmacological concentration activates NADPH oxidase, an enzyme thought to be involved in several angiotensin II effects.  相似文献   

12.
Alternatively spliced human glutaredoxin (Grx1(as)) cDNA was isolated from a neutrophil cDNA library, using a (32)P-labeled human glutaredoxin (Grx1) cDNA probe under non-stringent conditions. The sequence of Grx1(as) cDNA indicated that the open reading frame of the gene was identical to the open reading frame of the previously reported first human glutaredoxin (Grx1) cDNA, but the 3'-untranslated region of Grx1(as) was not homologous to Grx1 cDNA. Northern blot and RT-PCR analyses showed Grx1(as) mRNA was expressed in normal human neutrophils and transformed cells including U937, HL-60, THP, and Jurkat cells. Cloning and sequencing of the genomic gene corresponding to Grx1(as) cDNA showed that two different glutaredoxin cDNAs (Grx1(as) and Grx1) were generated from the same genomic gene via alternative splicing. Origination of Grx1(as) and Grx1 from the same gene was confirmed by chromosomal localization of the Grx1(as) gene to chromosome 5q13, the same location where the Grx1 gene was localized previously. During screening of the Grx1(as) genomic gene, two additional glutaredoxin pseudogenes were also isolated. Surprisingly, these pseudogenes contained 3'-untranslated regions that were nearly identical to the 3'-untranslated regions of Grx1(as,) not Grx1, cDNA. Because 3'-untranslated regions may be important in stabilizing mRNAs, the effect of the two 3'-untranslated regions of Grx1 and Grx1(as) on mRNA stability was investigated using luciferase reporter vectors with the 3'-untranslated regions. Luciferase activity was 2.6-fold greater in cells transfected with the reporter vector containing the 3'-untranslated region of Grx1(as) cDNA compared with the 3'-untranslated region of Grx1 cDNA. These data indicate that Grx1(as) cDNA is an alternatively spliced human Grx1 cDNA and that the Grx1(as) 3'-untranslated region may have a role in stabilizing mRNA.  相似文献   

13.
中国林蛙变态蝌蚪对pH、盐度和碱度的适应性   总被引:4,自引:1,他引:3  
在水温16~18℃的野外条件下,采用单因子急性毒性实验法,研究了水环境中pH、盐度和碱度对中国林蛙(Rana chensinensis)变态蝌蚪的毒性效应.结果表明,中国林蛙变态蝌蚪对pH的适应范围为4.3~9.7,最低耐受限3.6,最高耐受限10.7;对盐度的最高耐受限为9.98g·L^-1,适应盐度上限7.14g·L^-1,安全盐度上限1.70g·L^-1;对碱度的最高耐受限为19.96mmol·L^-1,适应碱度上限8.76mmol·L^-1。安全碱度上限2.41mmol·L^-1.野外变态蝌蚪饲养池水体pH应控制在6.5~8.5,盐度控制在2.0g·L^-1以下,碱度不超过4.0mmol·L^-1.中国林蛙变态蝌蚪是一种狭酸碱、低耐盐、低耐碱生物。  相似文献   

14.
The purposes of the present study are (1) to develop a sensitive analytical method to measure 1-bromopropane (1-BP) in urine, (2) to examine if 1-BP or bromide ion (Br) in urine is a useful biomarker of exposure to 1-BP, and (3) to identify the lowest 1-BP exposure concentration the method thus established can biomonitor. A factory survey was carried out on Friday, and 33 workers (all men) in cleaning and painting workshops participated; each worker was equipped with a diffusive sampler (carbon cloth KF-1500 as an adsorbent) to monitor 1-BP vapour for an 8-h shift, and offered a urine sample at the end of the shift for measurement of 1-BP and Br in urine. In addition, 10 non-exposed men offered urine samples as controls. The performance of the carbon cloth diffusive sampler was examined to confirm that the sampler is suitable for monitoring time-weighted average 1-BP vapour exposure. A head-space GC technique was employed for analysis of 1-BP in urine, whereas Br in urine was analysed by ECD-GC after derivatization to methyl bromide. The workers were exposed to vapours of seven other solvents (i.e. toluene, xylenes, ethylbenzene, acetone, etc.) in addition to 1-BP vapour; the 1-BP vapour concentration was 1.4 ppm as GM and 28 ppm as the maximum. Multiple regression analysis however showed that 1-BP was the only variable that influenced urinary 1-BP significantly. There was a close correlation between 1-BP in urine and 1-BP in air; the correlation coefficient (r) was >0.9 with a narrow variation range, and the regression line passed very close to the origin so that 2 ppm 1-BP exposure can be readily biomonitored. The correlation of Br in urine with 1-BP in air was also significant, but the r (about 0.7) was smaller than that for 1-BP, and the background Br level was also substantial (about 8 mg l-1). Thus, it was concluded that 1-BP in end-of-shift urine is a reliable biomarker of occupational exposure to 1-BP vapour, and that Br in urine is less reliable.  相似文献   

15.
Expression of vascular cell adhesion molecule-1 (VCAM-1) in synovial tissue was determined using the immunoperoxidase technique. Normal, rheumatoid arthritis (RA), and osteoarthritis (OA) synovia bound VCAM-1 antibodies in the intimal lining as well as blood vessels. The amount of VCAM-1 was significantly greater in the synovial lining of RA and OA tissues compared with normal synovium (p less than 0.002). There was also a trend toward greater levels of VCAM-1 staining in blood vessels of arthritic tissue (RA greater than OA greater than normal). Because VCAM-1 staining was especially intense in the synovial lining, VCAM-1 expression and regulation was studied on cultured fibroblast-like synoviocytes (FLS) derived from this region. Both VCAM-1 and intercellular adhesion molecule 1 were constitutively expressed on FLS. VCAM-1 expression was further increased by exposure to IL-1 beta, TNF-alpha, IL-4, and IFN-gamma. These cytokines (except for IL-4) also induced intercellular adhesion molecule 1 expression on FLS. ELAM was not detected on resting or cytokine-stimulated FLS. The specificity of VCAM-1 for FLS was demonstrated by the fact that only trace amounts were detected on normal and RA dermal fibroblasts. Cytokines induced intercellular adhesion molecule 1 display on dermal fibroblasts but had minimal effect on VCAM-1 expression. Finally, in adherence assays, Jurkat cell binding to resting FLS monolayers was inhibited by antibody to alpha 4/beta 1 integrin (VLA-4), CS-1 peptide from alternatively spliced fibronectin (which is another VLA-4 ligand), and, to a lesser extent, anti-VCAM-1 antibody. After cytokine stimulation of FLS, Jurkat-binding significantly increased, and this increase was blocked by anti-VCAM-1 antibody. Therefore, both CS-1 and VCAM-1 participate in VLA-4-mediated adherence to resting FLS in vitro, and VCAM-1 is responsible for the increase in Jurkat binding mediated by cytokines.  相似文献   

16.
Steiner S  Born W  Fischer JA  Muff R 《FEBS letters》2003,555(2):285-290
The receptor-activity-modifying protein (RAMP) 1 is a single-transmembrane-domain protein associated with the calcitonin-like receptor (CLR) to reveal a calcitonin gene-related peptide (CGRP) receptor. The extracellular region of RAMP1 contains six conserved cysteines. Here, Cys(27) in myc-tagged human (h) RAMP1 was deleted (hRAMP1Delta1), and Cys(40), Cys(57), Cys(72), Cys(82) and Cys(104) were each replaced by Ala. In COS-7 cells expressing hCLR/myc-hRAMP1Delta1 or -C82A, cell surface expression, [(125)I]halphaCGRP binding and cAMP formation in response to halphaCGRP were similar to those of hCLR/myc-hRAMP1. Cell surface expression of myc-hRAMP1-C72A was reduced to 24+/-7% of myc-hRAMP1, and that of -C40A, -C57A and -C104A was below 10%. [(125)I]halphaCGRP binding of hCLR/myc-hRAMP1-C72A was 13+/-3% of hCLR/myc-hRAMP1 and it was undetectable in hCLR/myc-hRAMP1-C40A-, -C57A- and -C104A-expressing cells. Maximal cAMP stimulation by halphaCGRP in hCLR/myc-hRAMP1-C40A- and -C72A-expressing cells was 14+/-1% and 33+/-2% of that of the hCLR/myc-hRAMP1 with comparable EC(50). But cAMP stimulation was abolished in cells expressing hCLR/myc-hRAMP1-C57A and -C104A. In conclusion, CGRP receptor function was not affected by the deletion of Cys(27) or the substitution of Cys(82) by Ala in hRAMP1, but it was impaired by the substitution of Cys(40), Cys(57), Cys(72) and Cys(104) by Ala. These four cysteines are required for the transport of hRAMP1 together with the CLR to the cell surface.  相似文献   

17.
The metabolism of 1alpha,25(OH)(2)D(3) (1alpha,3beta) and its A-ring diastereomers, 1beta,25(OH)(2)D(3) (1beta,3beta), 1alpha,25(OH)(2)-3-epi-D(3) (1alpha,3alpha), and 1beta,25(OH)(2)-3-epi-D(3) (1beta,3alpha), was examined to compare the substrate specificity and reaction specificity of CYP24A1 between humans and rats. The ratio between C-23 and C-24 oxidation pathways in human CYP24A1-dependent metabolism of (1alpha,3alpha) and (1beta,3alpha) was 1:1, although the ratio for (1alpha,3beta) and (1beta,3beta) was 1:4. These results indicate that the orientation of the hydroxyl group at the C-3 position determines the ratio between C-23 and C-24 oxidation pathways. A remarkable increase of metabolites in the C-23 oxidation pathway was also observed in rat CYP24A1-dependent metabolism. The binding affinity of human CYP24A1 for A-ring diastereomers was (1alpha,3beta)>(1alpha,3alpha)>(1beta,3beta)>(1beta,3alpha), indicating that both hydroxyl groups at C-1 and C-3 positions significantly affect substrate-binding. The information obtained in this study is quite useful for understanding substrate recognition of CYP24A1 and designing new vitamin D analogs.  相似文献   

18.
The rabbit liver microsomal P-450 catalyzed oxidation of styrene (1a) and isomeric phenylpropenes, trans-1-phenylpropene (1b), cis-1-phenylpropene (1c) and 3-phenylpropene (1d), was investigated and the enantioselectivity of the epoxidation of the olefinic double bond was determined by checking the enantiomeric excesses of the corresponding first formed epoxides (2). These enantiomeric excesses were always modest, ranging between 7% of (1S,2S)-(2b) and 22% of (1R,2R)-(2c). In the case of (1d) a nonenantioselective hydroxylation at the benzylic-allylic C(3) was also oberved. The ratio between this hydroxylation and olefin epoxidation of (Id) was 1:2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号