首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative effects of vernalization on FLC and SOC1 expression   总被引:2,自引:0,他引:2  
Prolonged exposure to cold results in early flowering in Arabidopsis winter annual ecotypes, with longer exposures resulting in a greater promotion of flowering than shorter exposures. The promotion of flowering is mediated through an epigenetic down-regulation of the floral repressor FLOWERING LOCUS C (FLC). We present results that provide an insight into the quantitative regulation of FLC by vernalization. Analysis of the effect of seed or plant cold treatment on FLC expression indicates that the time-dependent nature of vernalization on FLC expression is mediated through the extent of the initial repression of FLC and not by affecting the ability to maintain the repressed state. In the over-expression mutant flc-11, the time-dependent repression of FLC correlates with the proportional deacetylation of histone H3. Our results indicate that sequences within intron 1 and the activities of both VERNALIZATION1 (VRN1) and VERNALIZATION2 (VRN2) are required for efficient establishment of FLC repression; however, VRN1 and VRN2 are not required for maintenance of the repressed state during growth after the cold exposure. SUPPRESSOR OF OVER-EXPRESSION OF CO 1 (SOC1), a downstream target of FLC, is quantitatively induced by vernalization in a reciprocal manner to FLC. In addition, we show that SOC1 undergoes an acute induction by both short and long cold exposures.  相似文献   

2.
3.
In many plant species, exposure to a prolonged period of cold during the winter promotes flowering in the spring, a process termed vernalization. In Arabidopsis thaliana, the vernalization requirement of winter-annual ecotypes is caused by the MADS-box gene FLOWERING LOCUS C (FLC), which is a repressor of flowering. During the vernalization process, FLC is downregulated by alteration of its chromatin structure, thereby permitting flowering to occur. In wheat, a vernalization requirement is imposed by a different repressor of flowering, suggesting that some components of the regulatory network controlling the vernalization response differ between monocots and dicots. The extent to which the molecular mechanisms underlying vernalization have been conserved during the diversification of the angiosperms is not well understood. Using phylogenetic analysis, we identified homologs of FLC in species representing the three major eudicot lineages. FLC homologs have not previously been documented outside the plant family Brassicaceae. We show that the sugar beet FLC homolog BvFL1 functions as a repressor of flowering in transgenic Arabidopsis and is downregulated in response to cold in sugar beet. Cold-induced downregulation of an FLC-like floral repressor may be a central feature of the vernalization response in at least half of eudicot species.  相似文献   

4.
Integration of flowering signals in winter-annual Arabidopsis   总被引:12,自引:0,他引:12       下载免费PDF全文
Photoperiod is the primary environmental factor affecting flowering time in rapid-cycling accessions of Arabidopsis (Arabidopsis thaliana). Winter-annual Arabidopsis, in contrast, have both a photoperiod and a vernalization requirement for rapid flowering. In winter annuals, high levels of the floral inhibitor FLC (FLOWERING LOCUS C) suppress flowering prior to vernalization. FLC acts to delay flowering, in part, by suppressing expression of the floral promoter SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1). Vernalization leads to a permanent epigenetic suppression of FLC. To investigate how winter-annual accessions integrate signals from the photoperiod and vernalization pathways, we have examined activation-tagged alleles of FT and the FT homolog, TSF (TWIN SISTER OF FT), in a winter-annual background. Activation of FT or TSF strongly suppresses the FLC-mediated late-flowering phenotype of winter annuals; however, FT and TSF overexpression does not affect FLC mRNA levels. Rather, FT and TSF bypass the block to flowering created by FLC by activating SOC1 expression. We have also found that FLC acts as a dosage-dependent inhibitor of FT expression. Thus, the integration of flowering signals from the photoperiod and vernalization pathways occurs, at least in part, through the regulation of FT, TSF, and SOC1.  相似文献   

5.
Vernalization is the process by which flowering is promoted by prolonged exposure to the cold of a typical winter. In certain plant species, the role of vernalization is to suppress the expression of genes that encode repressors of flowering. In Arabidopsis, this suppression is an epigenetic phenomenon in the sense that it is mitotically stable in the spring after the inducing signal, cold, is no longer perceived. This epigenetic silencing results from the modification of the chromatin of flowering repressors.  相似文献   

6.
Kim SY  He Y  Jacob Y  Noh YS  Michaels S  Amasino R 《The Plant cell》2005,17(12):3301-3310
Winter-annual accessions of Arabidopsis thaliana are often characterized by a requirement for exposure to the cold of winter to initiate flowering in the spring. The block to flowering prior to cold exposure is due to high levels of the flowering repressor FLOWERING LOCUS C (FLC). Exposure to cold promotes flowering through a process known as vernalization that epigenetically represses FLC expression. Rapid-cycling accessions typically have low levels of FLC expression and therefore do not require vernalization. A screen for mutants in which a winter-annual Arabidopsis is converted to a rapid-cycling type has identified a putative histone H3 methyl transferase that is required for FLC expression. Lesions in this methyl transferase, EARLY FLOWERING IN SHORT DAYS (EFS), result in reduced levels of histone H3 Lys 4 trimethylation in FLC chromatin. EFS is also required for expression of other genes in the FLC clade, such as MADS AFFECTING FLOWERING2 and FLOWERING LOCUS M. The requirement for EFS to permit expression of several FLC clade genes accounts for the ability of efs lesions to suppress delayed flowering due to the presence of FRIGIDA, autonomous pathway mutations, or growth in noninductive photoperiods. efs mutants exhibit pleiotropic phenotypes, indicating that the role of EFS is not limited to the regulation of flowering time.  相似文献   

7.
Vernalization and epigenetics: how plants remember winter   总被引:14,自引:0,他引:14  
One of the remarkable aspects of the promotion of flowering by vernalization is that plants have evolved the ability to measure a complete winter season of cold and to 'remember' this prior cold exposure in the spring. Recent work in Arabidopsis demonstrates the molecular basis of this memory of winter: vernalization causes changes in the chromatin structure of a flowering repressor gene, FLOWERING LOCUS C (FLC), that switch this gene into a repressed state that is mitotically stable. A key component of the vernalization pathway, VERNALIZATION INSENSITIVE3 (VIN3), which is a PHD-domain-containing protein, is induced only after a prolonged period of cold. VIN3 is involved in initiating the modification of FLC chromatin structure. The stable silencing of FLC also requires the DNA-binding protein VERNALIZATION1 (VRN1) and the polycomb-group protein VRN2.  相似文献   

8.
A R Gendall  Y Y Levy  A Wilson  C Dean 《Cell》2001,107(4):525-535
The acceleration of flowering by a long period of low temperature, vernalization, is an adaptation that ensures plants overwinter before flowering. Vernalization induces a developmental state that is mitotically stable, suggesting that it may have an epigenetic basis. The VERNALIZATION2 (VRN2) gene mediates vernalization and encodes a nuclear-localized zinc finger protein with similarity to Polycomb group (PcG) proteins of plants and animals. In wild-type Arabidopsis, vernalization results in the stable reduction of the levels of the floral repressor FLC. In vrn2 mutants, FLC expression is downregulated normally in response to vernalization, but instead of remaining low, FLC mRNA levels increase when plants are returned to normal temperatures. VRN2 function therefore stably maintains FLC repression after a cold treatment, serving as a mechanism for the cellular memory of vernalization.  相似文献   

9.
10.
11.
12.
开花是植物由营养生长阶段向生殖生长阶段转变的重要过程, 长时间低温处理即春化对开花起到非常重要的促进作用。春化控制的拟南芥(Arabidopsis thaliana)开花中, 阻抑型转录因子FLC是重要的关节点, 春化记忆依赖于对该基因的控制。何跃辉研究组之前对拟南芥的研究揭示了转录因子VAL1或VAL2可以识别负调控开花的关键基因FLC成核区的顺式DNA元件, 协同PRC2复合体在春化过程中沉默FLC基因的表达, 并在随后的常温下继续维持FLC基因沉默直至受精结束, 使植物产生春化记忆。但在下一代中如何擦除这种记忆功能, 使FLC重新被激活, 以防止植物在过冬前或过冬时开花, 相关机制目前并不清楚。近期, 该研究组揭示了在植物胚胎发育早期一个种子特有的“先驱”转录因子参与擦除春化记忆, 重新激活FLC基因的分子机制, 并解析了胚胎中的基因激活传递到后胚胎发育(营养生长期)的表观遗传机理。该研究是开花领域的重要突破, 为作物开花调控的生产应用提供了新思路。  相似文献   

13.
FLC基因表达在植物春化过程中的作用   总被引:7,自引:0,他引:7  
洪薇  曹家树 《植物学通报》2002,19(4):406-411
在对以往有关不同开花途径研究简要总结的基础上综述了FLC基因在春化过程中的作用。近期以拟南芥不同生态型和突变体为模式的研究结果表明基因FLC可能是春化反应的关键基因。研究发现 ,FLC的表达水平与植株低温处理的时间呈数量关系 ,低温处理时间越长 ,FLC的表达越弱 ,去甲基化也可能对FLC起负调控的作用。同时FLC也存在于自主开花途径中 ,与其他基因共同作用以调节植株开花时间。而FLC的表达对开花起抑制作用。一系列研究表明 ,春化的低温作用可能在于相关基因的去甲基化 ,消除了FLC对开花的抑制作用 ,从而解除赤霉素合成途径的封锁最终导致植株在一定时期开花。  相似文献   

14.
15.
Epigenetic regulation of flowering   总被引:3,自引:0,他引:3  
The acceleration of flowering by prolonged low temperature treatment (vernalization) has unique properties including the floral transition occurring at a time separate from the vernalization treatment. This implies the vernalization condition is inherited through mitotic divisions, but this vernalized state is not inherited from one generation to the next. FLC, the key gene mediating this response in the Arabidopsis is repressed by histone modifications involving the VRN2 protein complex. Other protein complexes participate in activating the gene. While many plant species depend on vernalization for optimising flowering time, the genes involved differ between dicot and monocot plants in both Arabidopsis and cereals, vernalization regulates photoperiod control of flowering by preventing the induction of the floral promoter FT by long days in autumn but allowing induction of FT in spring and hence flowering occurs at an optimal time in the annual life cycle.  相似文献   

16.
《Epigenetics》2013,8(5):544-547
In some plant species, prolonged exposure to low temperature during the winter season is necessary to acquire the competence to flower in the following spring. This process, known as vernalization, is an epigenetic change in that a mitotically stable change of the developmental potential of the meristem (competence to flower) is maintained even in the absence of the inducing signal (prolonged cold exposure). In Arabidopsis, vernalization results in stable epigenetic repression of a potent floral repressor, FLOWERING LOCUS C (FLC). Increased enrichment of Polycomb Repressive Complex 2 (PRC2) and trimethylated Histone H3 Lys 27 (H3K27me3) at FLC chromatin is necessary for the stable maintenance of FLC repression by vernalization. Recent recognition of long noncoding RNAs (ncRNAs) in vernalization response indicates that long ncRNAs are evolutionarily conserved components for PRC2-mediated repression in eukaryotes.  相似文献   

17.
18.
Vernalization, the promotion of flowering after prolonged exposure to low temperatures, is an adaptive response of plants ensuring that flowering occurs at a propitious time in the annual seasonal cycle. In Arabidopsis, FLOWERING LOCUS C (FLC), which encodes a repressor of flowering, is a key gene in the vernalization response; plants with high-FLC expression respond to vernalization by downregulating FLC and thereby flowering at an earlier time. Vernalization has the hallmarks of an epigenetically regulated process. The downregulation of FLC by low temperatures is maintained throughout vegetative development but is reset at each generation. During our study of vernalization, we have found that a small gene cluster, including FLC and its two flanking genes, is coordinately regulated in response to genetic modifiers, to the environmental stimulus of vernalization, and in plants with low levels of DNA methylation. Genes encoded on foreign DNA inserted into the cluster also acquire the low-temperature response. At other chromosomal locations, FLC maintains its response to vernalization and imposes a parallel response on a flanking gene. This suggests that FLC contains sequences that confer changes in gene expression extending beyond FLC itself, perhaps through chromatin modification.  相似文献   

19.
20.
Winter-annual ecotypes of Arabidopsis are relatively late flowering, unless the flowering of these ecotypes is promoted by exposure to cold (vernalization). This vernalization-suppressible, late-flowering phenotype results from the presence of dominant, late-flowering alleles at two loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). In this study, we report that flc null mutations result in early flowering, demonstrating that the role of active FLC alleles is to repress flowering. FLC was isolated by positional cloning and found to encode a novel MADS domain protein. The levels of FLC mRNA are regulated positively by FRI and negatively by LUMINIDEPENDENS. FLC is also negatively regulated by vernalization. Overexpression of FLC from a heterologous promoter is sufficient to delay flowering in the absence of an active FRI allele. We propose that the level of FLC activity acts through a rheostat-like mechanism to control flowering time in Arabidopsis and that modulation of FLC expression is a component of the vernalization response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号