首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The glutathione S-transferase (GST) supergene family is an important part of cellular enzyme defense against endogenous and exogenous chemicals, many of which have carcinogenic potential. The present investigation was conducted to detect a possible association between polymorphisms at the GSTM1, GSTT1, and GSTP1 genes and the interaction with cigarette smoking and colorectal cancer incidence. We examined 181 patients with colorectal cancer and 204 controls. DNA was extracted from whole blood, and the GSTM1, GSTT1, and GSTP1 polymorphisms were determined using a real-time polymerase chain reaction and fluorescence resonance energy transfer with a Light-Cycler instrument. Associations between specific genotypes and the development of colorectal cancer were examined by use of logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI). The GSTM1 polymorphism was associated with an increased risk of developing colorectal cancer (OR = 1.62, 95% CI: 1.06–2.46). Also the risk of colorectal cancer associated with the GSTT1 null genotype was 1.64 (95% CI: 1.10–2.59). Statistically no differences were found between patients with colorectal cancer and control groups for the GSTP1 Ile/Ile, Ile/Val and Val/Val genotypes. In addition, the frequencies of the GSTM1 and GSTT1 deletion genotypes differed significantly between the cases and controls for current smokers; the GSTT1 null genotype especially is associated with a greater risk of colorectal cancer (OR = 2.44, 95% CI: 1.24–4.81). The GSTM1 and GSTT1 deletions were associated with an increased risk of developing a transverse or rectal tumor (OR = 1.86, 95% CI: 1.15–3.00; OR = 1.70, 95% CI: 1.02–2.84; respectively). The glutathione S-transferase polymorphisms were not associated with risk in patients stratified by age. The risk of colorectal cancer increased as putative high-risk genotypes increased for the combined genotypes of GSTM1 null, GSTT1 null, and either GSTP1 valine heterozygosity or GSTP1 valine homozygosity (OR = 2.69, 95% CI: 1.02–7.11). In conclusion, the results obtained in this study clearly suggest that those susceptibility factors related to different GST polymorphic enzymes are predisposing for colorectal cancer.  相似文献   

3.
4.
Activity of the VERNALIZATION1 (VRN1) gene is required for flowering in temperate cereals such as wheat and barley. In varieties that require prolonged exposure to cold to flower (vernalization), VRN1 is expressed at low levels and is induced by vernalization to trigger flowering. In other varieties, deletions or insertions in the first intron of the VRN1 gene are associated with increased VRN1 expression in the absence of cold treatment, reducing or eliminating the requirement for vernalization. To characterize natural variation in VRN1, the first intron of the barley (Hordeum vulgare) VRN1 gene (HvVRN1) was assayed for deletions or insertions in a collection of 1,000 barleys from diverse geographical regions. Ten alleles of HvVRN1 containing deletions or insertions in the first intron were identified, including three alleles that have not been described previously. Different HvVRN1 alleles were associated with differing levels of HvVRN1 expression in non-vernalized plants and with different flowering behaviour. Using overlapping deletions, we delineated regions in the HvVRN1 first intron that are associated with low levels of HvVRN1 expression in non-vernalized plants. Deletion of these intronic regions does not prevent induction of HvVRN1 by cold or the maintenance of increased HvVRN1 expression following cold treatment. We suggest that regions within the first intron of HvVRN1 are required to maintain low levels of HvVRN1 expression prior to winter but act independently of the regulatory mechanisms that mediate induction of HvVRN1 by cold during winter. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers 1179825, 1179833, 1179836, 1179858.  相似文献   

5.
A new temperature-sensitive mutant of Saccharomyces cerevisiae was isolated. Arrested cells grown at the nonpermissive temperature were of dumb-bell shape and contained large vacuoles. A DNA fragment was cloned based on its ability to complement this temperature sensitivity. The HTR1 gene encodes a putative protein of 93 kDa without significant homology to any known proteins. The gene was mapped between ade5 and lys5 on the left arm of chromosome VII. The phenotype of the gene disruptant appeared to be strain-specific; disruption of the gene in strain W303 caused the cells to become temperature sensitive. The arrested phenotype here was similar to that of the original is mutant and cells in G2/M phase predominated at high temperature. Another disruptant in a strain YPH background grew slowly at high temperature due to slow progression through G2/M phase, and morphologically abnormal (elongated) cells accumulated. A single-copy suppressor that alleviated the temperature-sensitive defects in both strains was identified as MCS1/SSD1. The wild-type strains W303 and YPH are known to carry defective MCS1/SSD1 alleles; hence HTR1 may function redundantly with MCS1/SSD1 to suppress the temperature-sensitive phenotypes. In addition, based on a halo bioassay, the disruptant strains appeared to be defective in recovery from, or adaptive response to G1 arrest mediated by mating pheromone, even at the permissive temperature. Thus the gene has at least two functions and is designated HTR1 (required for high temperature growth and recovery from G1 arrest induced by mating pheromone).  相似文献   

6.
SAP1-1 and SAP1-2 were isolated from the male reproductive buds of willow (Salix discolor, clone S365). SAP1-1 differs from SAP1-2 based on a few nucleotide substitutions, but the sizes of their full-length cDNAs are identical. The deduced amino acid sequences of SAP1-1 and SAP1-2 were 98% similar and contain the same C-terminal amino acid motif “GYGA” like that of PTAP1-2 from Populus trichocarpa. The expression patterns of SAP1 in various parts of the male reproductive buds of S. discolor implicate this gene in the formation of the inflorescence meristems, bracts, and floral meristems. To characterize the functions of SAP1, we assessed Arabidopsis thaliana transformed with 35S∷SAP1-1. A total of 52 transgenic T1 lines were obtained, and a 3:1 segregation ratio was obtained in the T2 generation of each line. In the T3 generation, five homozygous transgenic lines were obtained, which were used for further analysis. Screening of transgenic lines was greatly facilitated by the detection of GFP expression starting with germinating seeds. Phenotypes of the homozygous transgenic lines included early flowering, conversion of inflorescence branches to solitary flowers, formation of terminal flowers, and formation of flowers with greater number of petals, stamens, and pistils. Northern analysis showed similar expression levels in all five lines. This study provides the first functional analysis of an APETALA1 (AP1)/SQUAMOSA (SQUA) homolog from a dioecious species and suggests that SAP1 is a homolog of the AP1/SQUA gene.  相似文献   

7.
The skeleton of zebrafish fins consists of lepidotrichia and actinotrichia. Actinotrichia are fibrils located at the tip of each lepidotrichia and play a morphogenetic role in fin formation. Actinotrichia are formed by collagens associated with non-collagen components. The non-collagen components of actinotrichia (actinodins) have been shown to play a critical role in fin to limb transition. The present study has focused on the collagens that form actinotrichia and their role in fin formation. We have found actinotrichia are formed by Collagen I plus a novel form of Collagen II, encoded by the col2a1b gene. This second copy of the collagen II gene is only found in fishes and is the only Collagen type II expressed in fins. Both col1a1a and col2a1b were found in actinotrichia forming cells. Significantly, they also expressed the lysyl hydroxylase 1 (lh1) gene, which encodes an enzyme involved in the post-translational processing of collagens. Morpholino knockdown in zebrafish embryos demonstrated that the two collagens and lh1 are essential for actinotrichia and fin fold morphogenesis. The col1a1 dominant mutant chihuahua showed aberrant phenotypes in both actinotrichia and lepidotrichia during fin development and regeneration. These pieces of evidences support that actinotrichia are composed of Collagens I and II, which are post-translationally processed by Lh1, and that the correct expression and assembling of these collagens is essential for fin formation. The unique collagen composition of actinotrichia may play a role in fin skeleton morphogenesis.  相似文献   

8.
9.
The Schizosaccharomyces pombe temperature-sensitive mutant snm1 maintains reduced steady-state quantities of the spliceosomal small nuclear RNAs (snRNAs) and the RNA subunit of the tRNA processing enzyme RNase P. We report here the isolation of the pac1 + gene as a multi-copy suppressor of snm1. The pac1 + gene was previously identified as a suppressor of the ran1 mutant and by its ability to cause sterility when overexpressed. The pac1 + gene encodes a double-strand-specific ribonuclease that is similar to RNase III, an RNA processing and turnover enzyme in Escherichia coli. To investigate the essential structural features of the Pac1 RNase, we altered the pac1 + gene by deletion and point mutation and tested the mutant constructs for their ability to complement the snm1 and ran1 mutants and to cause sterility. These experiments identified four essential amino acids in the Pac1 sequence: glycine 178, glutamic acid 251, and valines 346 and 347. These amino acids are conserved in all RNase III-like proteins. The glycine and glutamic acid residues were previously identified as essential for E. coli RNase III activity. The valines are conserved in an element found in a family of double-stranded RNA binding proteins. Our results support the hypothesis that the Pac1 RNase is an RNase III homolog and suggest a role for the Pac1 RNase in snRNA metabolism.  相似文献   

10.
We have examined whether octanoic acid (OA) one of the short chain saturated fatty acids (SCSFA), increases ethylene response in the following three ethylene-mediated processes: a) hypocotyl growth in darkness; b) formation of new flowers; c) flower abscission. These processes were examined in the presence or absence of exogenous ethylene in Arabidopsis wild type (WT) and in the ethylene-insensitive mutants, etr1-3 and ein2-1 and in the ethylene over-producer mutant eto1-1. Our results show that OA decreased hypocotyl length of WT in the absence or presence of exogenous ethylene, apparently showing that OA acts via augmentation of ethylene action. However, the hypocotyl growth inhibition could not be ascribed to increased ethylene sensitivity since application of inhibitors of ethylene synthesis (aminoethoxyvinylglycine; AVG) or action (1-methylcyclopropene;1-MCP) to WT seedlings did not prevent specifically the OA-induced growth inhibition. Also, OA inhibited hypocotyl growth in the mutants etr1-3 and ein2-1 in a similar pattern to that obtained in WT. On the other hand, OA had no effect on flower formation neither in WT, etr1-3 and eto1-1, in which ethylene reduced flower formation, nor in the ein2-1 mutant, in which ethylene had no effect. OA also did not increase flower abscission in WT or in the mutants etr1-3 and ein2-1 neither in the absence nor in the presence of ethylene. However, OA has augmented flower abscission in the mutant eto1-1 only in the absence of exogenous ethylene. This result might indicate that the effect of OA on eto1-1 is specific to this mutant and is not due to general deleterious effects inflicted by OA. Taken together, our results show that in general OA does not augment ethylene response in Arabidopsis, but it might affect ethylene action in flower abscission of the ethylene-overproducer mutant.  相似文献   

11.
SNAREs are membrane-associated proteins that play a central role in vesicle targeting and intra-cellular membrane fusion reactions in eukaryotic cells. Here we describe the identification of AtBS14a and AtBS14b, putative SNAREs from Arabidopsis thaliana that share 60% amino acid sequence identity. Both AtBS14a and BS14b are dosage suppressors of the temperature-sensitive growth defect in sft1-1 cells and over-expression of either AtBS14a or AtBS14b can support the growth of sft1Δ cells but not bet1Δ cells. These data together with structure–function and biochemical studies presented herein suggest that AtBS14a and AtBS14b share properties that are consistent with them being members of the Bet1/Sft1 SNARE protein family.  相似文献   

12.
Ambient light and the circadian clock have been shown to be capable of acting either independently or in an interrelated fashion to regulate the expression of conidiation in the ascomycete fungusNeurospora crassa. Recently several molecular correlates of the circadian clock have been identified in the form of the morning-specific clock-controlled genesccg-1 andccg-2. In this paper we report studies on the regulation ofccg-1, an abundantly expressed gene displaying complex regulation. Consistent with an emerging consensus for clock-controlled genes and conidiation genes inNeurospora, we report thatccg-1 expression is induced by light, and show that this induction is independent of the direct effects of light on the circadian clock. Although circadian regulation of the gene is lost in strains lacking a functional clock, expression ofccg-1 is still not constitutive, but rather fluctuates in concert with changes in developmental potential seen in such strains. Light induction ofccg-1 requires the products of theNeurospora wc-1 andwc-2 genes, but surprisingly the requirement forwc-2 is suppressed in conditional mutants ofcot-1, a gene that encodes a cAMP-dependent protein kinase. These data provide insight into a complex regulatory web, involving at least circadian clock control, light control, metabolic control, and very probably developmental regulation, that governs the expression ofccg-1.  相似文献   

13.
The Caenorhabditis elegans gene laf-1 is critical for both embryonic development and sex determination. Laf-1 is thought to promote male cell fates by negatively regulating expression of tra-2 in both hermaphrodites and males. We cloned laf-1 and established that it encodes a putative DEAD-box RNA helicase related to Saccharomyces cerevisiae Ded1p and Drosophila Vasa. Three sequenced laf-1 mutations are missense alleles affecting a small region of the protein in or near helicase motif III. We demonstrate that the phenotypes resulting from laf-1 mutations are due to loss or reduction of laf-1 function, and that both laf-1 and a related helicase vbh-1 function in germline sex determination. Laf-1 mRNA is expressed in both males and hermaphrodites and in both the germline and soma of hermaphrodites. It is expressed at all developmental stages and is most abundant in embryos. LAF-1 is predominantly, if not exclusively, cytoplasmic and colocalizes with PGL-1 in P granules of germline precursor cells. Previous results suggest that laf-1 functions to negatively regulate expression of the sex determination protein TRA-2, and we find that the abundance of TRA-2 is modestly elevated in laf-1/+ females. We discuss potential functions of LAF-1 as a helicase and its roles in sex determination.  相似文献   

14.
Summary Meiosis and sporulation in yeast are subject to two types of regulation. The first depends on environmental conditions. The second depends on a genetic pathway which involves the control of the positive regulatory gene IME1 by RME1, which is in turn controlled by the MAT locus. The presence of IME1 on a multicopy plasmid enables cells to undergo meiosis regardless of their genotype at MAT or RME1. We show here that a multicopy plasmid carrying IME1 also enables meiosis, regardless of the environment. Therefore, both kinds of regulation appear to act through IME1. Furthermore, the behavior of multicopy plasmids carrying various segments from the IME1 region suggests that the region upstream of IME1 contains both positive and negative regulatory sites. Control of IME1 by the environment and by the MAT pathway both act through negative regulatory sites.  相似文献   

15.
In fission yeast (Schizosaccharomyces pombe) the homologue of the mammalian SUMO-1 ubiquitin-like modifier is encoded by the pmt3 gene. A two-hybrid screen using the telomere-binding protein Taz1p as bait identified Pmt3p as an interacting factor. In vitro experiments using purified components of the fission yeast Pmt3p modification system demonstrated that Taz1p could be modified directly by Pmt3p. The amino acid sequence of Taz1p contains a close match to the consensus modification site for SUMO-1, and a PEST sequence similar to those found in established SUMO-1 targets. Although previous experiments have identified an increase in telomere length as one consequence of the pmt3– genotype, we could not detect Pmt3p modification of Taz1p in protein extracts made from exponentially growing haploid cells or any effect of Pmt3p on the localization of GFP-Taz1p at discrete foci in the haploid cell nucleus.  相似文献   

16.
Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment and polarity.  相似文献   

17.
朱俊子  黎萍  邱泽澜  李晓刚  钟杰 《微生物学报》2022,62(10):3801-3812
【目的】蛋白-O-岩藻糖基转移酶1 (protein O-fucosyltransferase 1,POFUT1)是催化蛋白质O-岩藻糖基化的关键酶,在动物和人体内被证明调控一系列的生理病理过程,然而POFUT1基因在果生炭疽菌乃至真菌中还未见报道。本研究旨在克隆果生炭疽菌中CfPOFUT1基因,并分析其生物学功能。【方法】利用RT-PCR技术扩增CfPOFUT1的基因并进行生物信息学分析,构建了CfPOFUT1基因的沉默和过表达载体,通过PEG介导法将载体导入原生质体中获得CfPOFUT1基因的沉默和过表达突变体。测定了野生型菌株、CfPOFUT1沉默菌株和过表达菌株在PDA上的菌丝生长、分生孢子产生、萌发与附着胞形成、胁迫应答和致病力、杀菌剂敏感性等生物学表型。【结果】与野生型菌株相比,基因过表达突变体产孢量显著增加,致病力增强,对嘧菌酯敏感性降低,但对多菌灵和咪鲜胺敏感性增强。基因沉默突变体产孢量减少,细胞壁完整性、内质网应激敏感性提高,致病力减弱,对嘧菌酯敏感性提高,但对多菌灵和咪鲜胺敏感性降低。【结论】CfPOFUT1基因参与调控果生炭疽菌分生孢子产量,细胞壁完整性、内质网对应激和药剂敏感性,并对其致病性也具有一定的影响。  相似文献   

18.
Mutations in each of the genes mPer1, mPer2, mCry1 and mCry2 separately cause deviations from the wild type circadian system. Differences between these mutant strains have inspired the hypothesis that the duality of circadian genes (two mPer and two mCry genes involved) is related to the existence of two components in the circadian oscillator (Daan et al., J Biol Rhythms 16:105–116, 2001). We tested the predictions from this theory that the circadian period (τ) lengthens under constant illumination (LL) in mCry1 and mPer1 mutant mice, while it shortens in mCry2 and mPer2 mutants. mCry1 −/− and mCry2 −/− knockout mice both consistently increased τ with increasing light intensity, as did wild type mice. With increasing illumination, rhythmicity is reduced in mCry1, mCry2 and mPer1, but not in mPer2 deficient mice. Results for mPer mutant mice are in agreement with data reported on these strains earlier by Steinlechner et al. (J Biol Rhythms 17:202–209, 2002), and also with the predictions from the model. The increase in cycle length of the circadian system by light in the mCry2 deficient mice violates the predictions. The model is thereby rejected: the mCry genes do not play a differential role, although the opposite responses of mPer mutants to light remain consistent with a functional Evening–Morning differentiation.  相似文献   

19.
tie-dyed1 (tdy1) and sucrose export defective1 (sxd1) are recessive maize (Zea mays) mutants with nonclonal chlorotic leaf sectors that hyperaccumulate starch and soluble sugars. In addition, both mutants display similar growth-related defects such as reduced plant height and inflorescence development due to the retention of carbohydrates in leaves. As tdy1 and sxd1 are the only variegated leaf mutants known to accumulate carbohydrates in any plant, we investigated whether Tdy1 and Sxd1 function in the same pathway. Using aniline blue staining for callose and transmission electron microscopy to inspect plasmodesmatal ultrastructure, we determined that tdy1 does not have any physical blockage or alteration along the symplastic transport pathway as found in sxd1 mutants. To test whether the two genes function in the same genetic pathway, we constructed F2 families segregating both mutations. Double mutant plants showed an additive interaction for growth related phenotypes and soluble sugar accumulation, and expressed the leaf variegation pattern of both single mutants indicating that Tdy1 and Sxd1 act in separate genetic pathways. Although sxd1 mutants lack tocopherols, we determined that tdy1 mutants have wild-type tocopherol levels, indicating that Tdy1 does not function in the same biochemical pathway as Sxd1. From these and other data we conclude that Tdy1 and Sxd1 function independently to promote carbon export from leaves. Our genetic and cytological studies implicate Tdy1 functioning in veins, and a model discussing possible functions of TDY1 is presented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号