首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bayliss R  Littlewood T  Stewart M 《Cell》2000,102(1):99-108
We describe the crystal structure of a complex between importin-beta residues 1-442 (Ib442) and five FxFG nucleoporin repeats from Nsp1p. Nucleoporin FxFG cores bind on the convex face of Ib442 to a primary site between the A helices of HEAT repeats 5 and 6, and to a secondary site between HEAT repeats 6 and 7. Mutations at importin-beta Ile178 in the primary FxFG binding site reduce both binding and nuclear protein import, providing direct evidence for the functional significance of the importin-beta-FxFG interaction. The FxFG binding sites on importin-beta do not overlap with the RanGTP binding site. Instead, RanGTP may release importin-beta from FxFG nucleoporins by generating a conformational change that alters the structure of the FxFG binding site.  相似文献   

2.
In the peptide SPOT array technique, an array of different peptides are synthesized on, and covalently linked to, cellulose membranes. In one usage of this technique, these peptides are screened in an overlay assay to determine which short sequence(s) contains a binding site for an interacting protein. By preparing overlapping peptides that cover the entire sequence of a protein, all of the binding domains on the protein for a second protein can be identified. We have utilized the peptide SPOT array technique to identify the short amino acid sequences within nuclear pore complex proteins (also known as nucleoporins or Nups) that bind the nuclear carrier importin-beta. Crystallization studies by others have indicated that nuclear carriers such as importin-beta bind to phenylalanine-glycine (FG) repeats present in numerous copies in the sequences of a family of nucleoporins. Consistent with this, we found that most (but not all) of the Nup binding sites for importin-beta identified by this technique contain Fx, FG, FxFG, FxFx, or GLFG sequences, although not all such sequences bound importin-beta. Peptide SPOT array substitution studies confirmed a crucial role for the phenylalanine in FG repeats and identified a lysine residue flanking some repeats that is crucial for importin-beta binding to those repeats. In addition to these expected binding sequences for importin-beta, we found multiple instances of a peptide lacking a canonical FG repeat that strongly bound importin-beta, indicating that additional Nup sequences may form binding sites for importin-beta.  相似文献   

3.
Staphylococcal toxins bind to different sites on HLA-DR   总被引:5,自引:0,他引:5  
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin 1 (TSST-1) bind to MHC class II molecules and the toxin-class II complexes induce proliferation of T cells bearing specific V beta sequences. We have previously reported that these toxins display varying binding affinities for HLA-DR1. We now investigated whether these differences simply reflected differences in binding affinity for a single class II binding site or, at least in part, the engagement of different binding sites on the HLA-DR complex. Through competitive binding studies we show that SEB and TSST-1, which are not closely related by their amino acid sequences, bind to two different sites on HLA-DR. Both of these sites are also occupied by staphylococcal enterotoxin A (SEA), enterotoxin D (SED), and enterotoxin E (SEE) which exhibit more than 70% amino acid sequence homology. SEB and TSST-1 failed to inhibit SEA binding to HLA-DR. These studies suggest that there may be three distinct, although perhaps overlapping, binding sites on HLA-DR for these toxins. Further, although SED and SEE are similar to SEA in structure, and appear to bind the same sites on HLA-DR as SEA, they displayed significantly lower binding affinities. T cell proliferative responses to SED required a higher concentration of the toxin than SEA, probably reflecting its lower binding affinity. SEE, however, elicited T cell responses at very low concentrations, similar to SEA, despite its much lower binding affinity. Therefore, although the affinities of these toxins to MHC class II molecules appear to significantly influence the T cell responses, the effective recognition of the toxin-class II complex by the TCR may also contribute to such responses.  相似文献   

4.
5.
6.
The phthalocyanine tetrasulfonates (PcTS), a class of cyclic tetrapyrroles, bind to the mammalian prion protein, PrP. Remarkably, they can act as anti-scrapie agents to prevent the formation and spread of infectious, misfolded PrP. While the effects of phthalocyanines on the diseased state have been investigated, the interaction between PcTS and PrP has not yet been extensively characterized. Here we use multiple, complementary assays (surface plasmon resonance, isothermal titration calorimetry, fluorescence correlation spectroscopy, and tryptophan fluorescence quenching) to characterize the binding of PcTS to natively-folded hamster PrP(90-232), in order to determine binding constants, ligand stoichiometry, influence of buffer ionic strength, and the effects of chelated metal ions. We found that binding strength depends strongly on chelated metal ions, with Al(3+)-PcTS binding the weakest and free-base PcTS the strongest of the three types tested (Al(3+), Zn(2+), and free-base). Buffer ionic strength also affected the binding, with K(d) increasing along with salt concentration. The binding isotherms indicated the presence of at least two different binding sites with micromolar affinities and a total stoichiometry of ~4-5 PcTS molecules per PrP molecule.  相似文献   

7.
8.
Metal binding has been suggested to be relevant in the antifungal and antibacterial mechanism of histatin 5, a human salivary protein. Proton nuclear magnetic resonance (NMR) spectra were obtained to investigate the specificity of metal binding to the seven histidyl, one aspartyl and one glutamyl amino acid side-chains of histatin 5 in aqueous solutions. Three C(epsilon1)-H histidyl and the C(gamma)-H glutamyl resonances of histatin 5 were selectively altered in spectra of solutions containing three equivalents of zinc. Copper binding to histatin 5 resulted in a reduced intensity of C(beta)-H aspartyl resonances, while no evidence for calcium binding was found. These results indicate that zinc binding to histatin 5 involves His-15 present within the -H-E-X-X-H- zinc binding motif, and copper binding occurs within the N-terminal D-S-H-, ATCUN motif.  相似文献   

9.
It is not known how Mex67p and Mtr2p, which form a heterodimer essential for mRNA export, transport mRNPs through the nuclear pore. Here, we show that the Mex67p/Mtr2p complex binds to all of the repeat types (GLFG, FXFG, and FG) found in nucleoporins. For this interaction, complex formation between Mex67p and Mtr2p has to occur. MEX67 and MTR2 also genetically interact with different types of repeat nucleoporins, such as Nup116p, Nup159p, Nsp1p, and Rip1p/Nup40p. These data suggest a model in which nuclear mRNA export requires the Mex67p/Mtr2p heterodimeric complex to directly contact several repeat nucleoporins, organized in different nuclear pore complex subcomplexes, as it carries the mRNP cargo through the nuclear pore.  相似文献   

10.
Interleukin 21 (IL-21) is a recently identified novel cytokine that plays an important role in the regulation of B, T, and NK cell functions. Its effects depend on binding to and signaling through an IL-21 receptor complex consisting of the IL-21 receptor (IL-21R) and the common gamma-chain (gamma(c)). In this study using biosensor technique, the ligand-binding properties of IL-21R and gamma(c), which are presently poorly understood on a molecular level, were analyzed employing recombinant ectodomains of IL-21R and gamma(c). The formation of a binary complex between IL-21 and immobilized IL-21R (K(D) 70pM), gamma(c) and immobilized IL-21 (K(D) 160 microM) and a ternary complex between gamma(c) and IL-21 saturated immobilized IL-21R (K(D) 160nM) could be analyzed. The gamma(c) residues involved in IL-21 binding were defined by alanine-scanning mutational analysis. The epitope comprises gamma(c) residues N44, Y103, N128, L161, E162, and L208. It is not identical but partially overlapping with the previously established gamma(c) epitope for IL-4 binding. These results open the way to understand the molecular recognition mechanism in the IL-21 receptor system and also the promiscuous binding properties of gamma(c).  相似文献   

11.
Basal lamina (BL) ensheathes each skeletal muscle fiber and passes through the synaptic cleft at the neuromuscular junction. Synaptic portions of the BL are known to play important roles in the formation, function, and maintenance of the neuromuscular junction. Here we demonstrate molecular differences between synaptic and extrasynaptic BL. We obtained antisera to immunogens that might be derived from or share determinants with muscle fiber BL, and used immunohistochemical techniques to study the binding of antibodies to rat skeletal muscle. Four antisera contained antibodies that distinguished synaptic from extrasynaptic portions of the muscle fiber's surface. They were anti- anterior lens capsule, anti-acetylcholinesterase, anti-lens capsule collagen, and anti-muscle basement membrane collagen; the last two sera were selective only after antibodies binding to extrasynaptic areas had been removed by adsorption with connective tissue from endplate-free regions of muscle. Synaptic antigens revealed by each of the four sera were present on the external cell surface and persisted after removal of nerve terminal. Schwann cell, and postsynaptic plasma membrane. Thus, the antigens are contained in or connected to BL of the synaptic cleft. Details of staining patterns, differential susceptibility of antigens to proteolysis, and adsorption experiments showed that the antibodies define at least three different determinants that are present in synaptic but not extrasynaptic BL.  相似文献   

12.
Glutamate-5-kinase (G5K) catalyzes the controlling first step of proline biosynthesis. Substrate binding, catalysis and feed-back inhibition by proline are functions of the N-terminal approximately 260-residue domain of G5K. We study here the impact on these functions of 14 site-directed mutations affecting 9 residues of Escherichia coli G5K, chosen on the basis of the structure of the bisubstrate complex of the homologous enzyme acetylglutamate kinase (NAGK). The results support the predicted roles of K10, K217 and T169 in catalysis and ATP binding and of D150 in orienting the catalytic lysines. They support the implication of D148 and D150 in glutamate binding and of D148 and N149 in proline binding. Proline increases the S(0.5) for glutamate and appears to bind at a site overlapping with the site for glutamate. We conclude that G5K and NAGK closely resemble each other concerning substrate binding and catalysis, but that they have different mechanisms of feed-back control.  相似文献   

13.
14.
IKP104 is one of a group of tubulin-binding drugs whose interaction with tubulin suggests that it may bind to the protein at or close to the region where vinblastine binds. By itself IKP104 is a potent enhancer of tubulin decay as evidenced by the fact that it induces the exposure of the sulfhydryl groups and hydrophobic areas on tubulin. In this respect, IKP104 differs from vinblastine and other drugs such as phomopsin A, dolastatin 10, rhizoxin, and maytansine which are competitive or noncompetitive inhibitors of vinblastine binding. In contrast, however, in the presence of colchicine, IKP104 behaves differently and strongly stabilizes tubulin, to an extent much greater than does colchicine alone. IKP104 appears to have two classes of binding site on tubulin, differing in affinity; the acceleration of decay appears to be mediated by the low-affinity site (Chaudhuriet al., 1998,J. Protein Chem., in press). We investigated the relationship of the binding of IKP104 and vinblastine. We found that the high-affinity site or sites of IKP104 overlap with or interact with the vinblastine-binding sites, but that the low-affinity site is distinctly different.  相似文献   

15.
''SPKK'' motifs prefer to bind to DNA at A/T-rich sites.   总被引:19,自引:4,他引:19       下载免费PDF全文
The termini of histone H1 and sea urchin spermatogenous H1 and H2B, which are essential for correct chromatin condensation, often contain repeats of the sequence SPK(R)K(R). A special type of beta-turn structural motif has been proposed for this sequence, and it has been shown that a segment of the sea urchin sperm H1 N terminus, which has six repeats of the motif (S6 peptide), binds to DNA and competes with the DNA binding drug Hoechst 33258. Here, we demonstrate by quantitative analysis of hydroxyl radical footprints that the synthetic oligopeptide, SPRKSPRK (S2), and the S6 peptide prefer to bind to the minor groove of DNA at the same A/T-rich sites. The locations of these binding sites are similar to Hoechst, but the sequence specificity of the oligopeptides is lower than that of Hoechst, and the detailed protection patterns differ slightly. We suggest that these small peptides and Hoechst recognize similar sequence-dependent features of the local architecture of DNA.  相似文献   

16.
IKP104 is one of a group of tubulin-binding drugs whose interaction with tubulin suggests that it may bind to the protein at or close to the region where vinblastine binds. By itself IKP104 is a potent enhancer of tubulin decay as evidenced by the fact that it induces the exposure of the sulfhydryl groups and hydrophobic areas on tubulin. In this respect, IKP104 differs from vinblastine and other drugs such as phomopsin A, dolastatin 10, rhizoxin, and maytansine which are competitive or noncompetitive inhibitors of vinblastine binding. In contrast, however, in the presence of colchicine, IKP104 behaves differently and strongly stabilizes tubulin, to an extent much greater than does colchicine alone. IKP104 appears to have two classes of binding site on tubulin, differing in affinity; the acceleration of decay appears to be mediated by the low-affinity site (Chaudhuriet al., 1998,J. Protein Chem., in press). We investigated the relationship of the binding of IKP104 and vinblastine. We found that the high-affinity site or sites of IKP104 overlap with or interact with the vinblastine-binding sites, but that the low-affinity site is distinctly different.  相似文献   

17.
Harris EN  Weigel PH 《Glycobiology》2008,18(8):638-648
The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341-17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. (125)I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE.  相似文献   

18.
The Delta pH pathway is one of two systems for protein transport to the thylakoid lumen. It is a novel transport system that requires only the thylakoidal DeltapH to power translocation. Several substrates of the Delta pH pathway, including the intermediate precursor form of OE17 (iOE17) and the truncated precursor form of OE17 (tOE17), were shown to bind to the membrane in the absence of the DeltapH and be transported into the lumen when the DeltapH was restored. Binding occurred without energy or soluble factors, and efficient transport from the bound state ( approximately 80-90%) required only the DeltapH. Binding is due to protein-protein interactions because protease pretreatment of thylakoids destroyed their binding capability. Precursors are bound to a specific site on the Delta pH pathway because binding was competed by saturating amounts of Delta pH pathway precursor proteins, but not by a Sec pathway precursor protein. These results suggested that precursor tOE17 binds to components of the Delta pathway translocation machinery. Hcf106 and Tha4 are two components of the Delta pH pathway machinery. Antibodies to Hcf106 or Tha4, when prebound to thylakoids, specifically inhibited precursor transport on the Delta pH pathway. However, only Hcf106 antibodies reduced the level of precursor binding. These results suggest that Hcf106 functions in early steps of the transport process.  相似文献   

19.
Voltage-gated potassium (KV) channels can be opened by negatively charged resin acids and their derivatives. These resin acids have been proposed to attract the positively charged voltage-sensor helix (S4) toward the extracellular side of the membrane by binding to a pocket located between the lipid-facing extracellular ends of the transmembrane segments S3 and S4. By contrast to this proposed mechanism, neutralization of the top gating charge of the Shaker KV channel increased resin-acid–induced opening, suggesting other mechanisms and sites of action. Here, we explore the binding of two resin-acid derivatives, Wu50 and Wu161, to the activated/open state of the Shaker KV channel by a combination of in silico docking, molecular dynamics simulations, and electrophysiology of mutated channels. We identified three potential resin-acid–binding sites around S4: (1) the S3/S4 site previously suggested, in which positively charged residues introduced at the top of S4 are critical to keep the compound bound, (2) a site in the cleft between S4 and the pore domain (S4/pore site), in which a tryptophan at the top of S6 and the top gating charge of S4 keeps the compound bound, and (3) a site located on the extracellular side of the voltage-sensor domain, in a cleft formed by S1–S4 (the top-VSD site). The multiple binding sites around S4 and the anticipated helical-screw motion of the helix during activation make the effect of resin-acid derivatives on channel function intricate. The propensity of a specific resin acid to activate and open a voltage-gated channel likely depends on its exact binding dynamics and the types of interactions it can form with the protein in a state-specific manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号