首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncertainty was quantified for an inventory estimating change in soil organic carbon (SOC) storage resulting from modifications in land use and management across US agricultural lands between 1982 and 1997. This inventory was conducted using a modified version of a carbon (C) accounting method developed by the Intergovernmental Panel on Climate Change (IPCC). Probability density functions (PDFs) were derived for each input to the IPCC model, including reference SOC stocks, land use/management activity data, and management factors. Change in C storage was estimated using a Monte‐Carlo approach with 50 000 iterations, by randomly selecting values from the PDFs after accounting for dependencies in the model inputs. Over the inventory period, mineral soils had a net gain of 10.8 Tg C yr?1, with a 95% confidence interval ranging from 6.5 to 15.3 Tg C yr?1. Most of this gain was due to setting‐aside lands in the Conservation Reserve Program. In contrast, managed organic soils lost 9.4 Tg C yr?1, with a 95% confidence interval ranging from 6.4 to 13.3 Tg C yr?1. Combining these gains and losses in SOC, US agricultural soils accrued 1.3 Tg C yr?1 due to land use and management change, with a 95% confidence interval ranging from a loss of 4.4 Tg C yr?1 to a gain of 6.9 Tg C yr?1. Most of the uncertainty was attributed to management factors for tillage, land use change between cultivated and uncultivated conditions, and C loss rates from managed organic soils. Based on the uncertainty, we are not able to conclude with 95% confidence that change in US agricultural land use and management between 1982 and 1997 created a net C sink for atmospheric CO2.  相似文献   

2.
We present the most comprehensive pan‐European assessment of future changes in cropland and grassland soil organic carbon (SOC) stocks to date, using a dedicated process‐based SOC model and state‐of‐the‐art databases of soil, climate change, land‐use change and technology change. Soil carbon change was calculated using the Rothamsted carbon model on a European 10 × 10′ grid using climate data from four global climate models implementing four Intergovernmental Panel on Climate Change (IPCC) emissions scenarios (SRES). Changes in net primary production (NPP) were calculated by the Lund–Potsdam–Jena model. Land‐use change scenarios, interpreted from the narratives of the IPCC SRES story lines, were used to project changes in cropland and grassland areas. Projections for 1990–2080 are presented for mineral soil only. Climate effects (soil temperature and moisture) will tend to speed decomposition and cause soil carbon stocks to decrease, whereas increases in carbon input because of increasing NPP will slow the loss. Technological improvement may further increase carbon inputs to the soil. Changes in cropland and grassland areas will further affect the total soil carbon stock of European croplands and grasslands. While climate change will be a key driver of change in soil carbon over the 21st Century, changes in technology and land‐use change are estimated to have very significant effects. When incorporating all factors, cropland and grassland soils show a small increase in soil carbon on a per area basis under future climate (1–7 t C ha?1 for cropland and 3–6 t C ha?1 for grassland), but when the greatly decreasing area of cropland and grassland are accounted for, total European cropland stocks decline in all scenarios, and grassland stocks decline in all but one scenario. Different trends are seen in different regions. For Europe (the EU25 plus Norway and Switzerland), the cropland SOC stock decreases from 11 Pg in 1990 by 4–6 Pg (39–54%) by 2080, and the grassland SOC stock increases from 6 Pg in 1990 to 1.5 Pg (25%) under the B1 scenario, but decreases to 1–3 Pg (20–44%) under the other scenarios. Uncertainty associated with the land‐use and technology scenarios remains unquantified, but worst‐case quantified uncertainties are 22.5% for croplands and 16% for grasslands, equivalent to potential errors of 2.5 and 1 Pg SOC, respectively. This is equivalent to 42–63% of the predicted SOC stock change for croplands and 33–100% of the predicted SOC stock change for grasslands. Implications for accounting for SOC changes under the Kyoto Protocol are discussed.  相似文献   

3.
Carbon (C) storage and sequestration in agricultural soils is considered to be an important issue in the study of terrestrial C cycling and global climatic change. The baseline C stock and the C sequestration potential are among the criteria for a region or a state to adopt strategies or policies in response to commitment to the Kyoto Protocol. Paddy soils represent a large portion of global cropland. However, little information on the potential of C sequestration and storage is available for such soils. In this paper, an estimation of the topsoil soil organic carbon (SOC) pool and the sequestration potential of paddy soils in China was made by using the data from the 2nd State Soil Survey carried out during 1979–1982 and from the nationwide arable soil monitoring system established since then. Results showed that the SOC density ranged from 12 to 226 t C ha?1 with an area‐weighted mean density of 44 t C ha?1, which is comparable to that of the US grasslands and is higher than that of the cultivated dryland soils in China and the US. The estimated total topsoil SOC pool is 1.3 Pg, with 0.85 Pg from the upper plow layer and 0.45 Pg from the plowpan layer. This pool size is ~2% of China's total storage in the top 1 m of the soil profiles and ~4% of the total topsoil pool, while the area percentage of paddy soil is 3.4% of the total land. The C pool in paddy soils was found predominantly in southeast China geographically and in the subgroups of Fe‐accumulating and Fe‐leaching paddy soils pedogenetically. In comparison with dryland cultivation, irrigation‐based rice cultivation in China has induced significant enrichment of SOC storage (0.3 Pg) in paddy soils. The induced total C sequestration equals half of China's total annual CO2 emission in the 1990s. Estimates using different SOC sequestration scenarios show that the paddy soils of China have an easily attainable SOC sequestration potential of 0.7 Pg under present conditions and may ultimately sequester 3.0 Pg. Soil monitoring data showed that the current C sequestration rate is 12 Tg yr?1. The total C sequestration potential and the current sequestration rate of the paddy soils are over 30%, while the area of the paddy soils is 26% that of China's total croplands. Therefore, practicing sustainable agriculture is urgently needed for enhancing SOC storage to realize the ultimate SOC sequestration of rice‐based agriculture of China, as the current C sequestration rate is significantly lower than the potential rate.  相似文献   

4.
We model the carbon balance of European croplands between 1901 and 2000 in response to land use and management changes. The process‐based ORCHIDEE‐STICS model is applied here in a spatially explicit framework. We reconstructed land cover changes, together with an idealized history of agro‐technology. These management parameters include the treatment of straw and stubble residues, application of mineral fertilizers, improvement of cultivar species and tillage. The model is integrated for wheat and maize during the period 1901–2000 forced by climate each 1/2‐hour, and by atmospheric CO2, land cover change and agro‐technology each year. Several tests are performed to identify the most sensitive agro‐technological parameters that control the net biome productivity (NBP) in the 1990s, with NBP equaling for croplands the soil C balance. The current NBP is a small sink of 0.16 t C ha?1 yr?1. The value of NBP per unit area reflects past and current management, and to a minor extent the shrinking areas of arable land consecutive to abandonment during the 20th Century. The uncertainty associated with NBP is large, with a 1‐sigma error of 0.18 t C ha?1 yr?1 obtained from a qualitative, but comprehensive budget of various error terms. The NBP uncertainty is dominated by unknown historical agro‐technology changes (47%) and model structure (27%), with error in climate forcing playing a minor role. A major improvement to the framework would consist in using a larger number of representative crops. The uncertainty of historical land‐use change derived from three different reconstructions, has a surprisingly small effect on NBP (0.01 t C ha?1 yr?1) because cropland area remained stable during the past 20 years in all the tested land use forcing datasets. Regional cross‐validation of modeled NBP against soil C inventory measurements shows that our results are consistent with observations, within the uncertainties of both inventories and model. Our estimation of cropland NBP is however likely to be biased towards a sink, given that inventory data from different regions consistently indicate a small source whereas we model a small sink.  相似文献   

5.
Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model‐based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above‐ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1‐km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old‐growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr?1 (98 TgC yr?1 in forest biomass and 105 TgC yr?1 in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data.  相似文献   

6.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

7.
Soil monitoring programmes face significant challenges as there is an important trade‐off between detecting significant changes in soil properties on the one hand (which can be achieved by minimizing variability by higher sampling density or stratification approaches), and identifying the driving forces responsible for these changes on the other hand (which requires enough variability). This study aims to reconcile these two objectives by identifying the driving forces of soil organic carbon (SOC) evolution over a long period, based on an extensive but stratified soil monitoring programme. Data at both the finest level (questionnaires to the farmers) and the large scale (agricultural census, climate and soil databases for southern Belgium) were used in a cluster analysis, multiple linear regressions and mixed odels in order to discriminate between the driving forces involved. Results indicated that the negative ‘baseline effect’ (i.e. the inversely proportional effect of the initial SOC content on the SOC evolution) was responsible for an important part of the SOC variability. Consequently, the systems are not at steady state when starting the observations, although this assumption is used by most SOC dynamic models. Moreover, the baseline effect resulted in a trend of the soils to converge towards a regional SOC stock which significantly differed according to land use (36.4 t C ha?1 for the plough depth of cropland and 92.2 t C ha?1 for the 0–30 cm layer of grassland). Despite this strong effect, the main driving forces of the SOC decrease of cropland (?0.2 t C ha?1 yr?1) and SOC increase of grassland (+0.2 t C ha?1 yr?1) over a period of 50 years were discriminated. The agricultural management (cropland) and the clay content (grassland), together with the change in precipitation (to a lesser degree for cropland) were highlighted as the predominant factors involved in SOC evolution, when land use change is excluded. The use of questionnaires allowed to better understanding the impact of an intensive agricultural management on the SOC content, as the lowest SOC stocks were associated to the most intensively managed fields. The mixed models partly succeeded in predicting SOC evolution as they presented still large uncertainties after validation (mean error from 3% to 25%, root mean square error of prediction from 21% to 242%). While SOC monitoring schemes are increasingly being implemented, our results will likely apply to those using a similar design. It was shown that this strategy succeeded to reconcile both the SOC change detection and the distinction of the driving forces involved at the regional scale.  相似文献   

8.
Evaluations of soil organic carbon (SOC) stocks are often based on assigning a carbon density to each one of a number of ecosystems or soil classes considered, using data from soil profiles within these categories. A better approach, in which the use of classification methods by which extrapolation of SOC data to larger areas is avoided, can only be used if enough data are available at a sufficiently small scale. Over 190 000 SOC measurements (0–24 cm) have been made in the Flemish cropland (the Northern part of Belgium) in the 1989–2000 period. These SOC data were grouped into 3‐year periods and as means plus standard deviation per (part of) community (polygons). This large dataset was used to calculate SOC stocks and their evolution with time, without data extrapolation. Using a detailed soil map, larger spatial groups of polygons were created based on soil texture and spatial location. Linear regression analysis showed that in the entire study area, SOC stocks had decreased or at best had remained stable. In total, a yearly decrease of 354 kton OC yr?1 was calculated, which corresponds with a net CO2 emission of 1238 kton CO2 yr?1. Specific regions with a high carbon sequestration potential were identified, based on SOC losses during the 1989–2000 period and the mean 1999 SOC content, compared to the average SOC content of soils in Flanders with a similar soil texture. When restoring the SOC stocks to their 1990 level, we estimated the carbon sequestration potential of the Flemish cropland soils to be some 300 kton CO2 yr?1 at best, which corresponds to a 40‐year restoration period. In conclusion, we can say that in regions where agricultural production is very intense, carbon sequestration in the cropland may make only a very modest contribution to a country's effort to reduce greenhouse gas emissions.  相似文献   

9.
Soil carbon stores amount to 54% of the terrestrial carbon pool and twice the atmospheric carbon pool, but soil organic carbon (SOC) can be transient. There is an ongoing debate about whether soils are a net source or sink of carbon, and understanding the role of aeolian processes in SOC erosion, transport and deposition is rudimentary. The impacts of SOC erosion by wind on the global carbon budget, and its importance for carbon accounting remain largely unknown. Current understanding of SOC losses to wind erosion is based on the assumption that the SOC content of eroded material is the same as that of the parent soils. However, measured enrichment factors for the SOC content of Australian dusts relative to parent soils show that the SOC content of dusts can be up to seven times (by weight) larger than that of source‐area soils, with enrichment factors ranging from 1.67 to 7.09. Assuming dust emissions from the continent of ~110 Mt yr?1, SOC dust emissions would be 0.13–4.65 Mt SOC yr?1 without enrichment but 0.94–7.77 Mt SOC yr?1 with enrichment; which represents an uncertainty of around 60%. Representing SOC enrichment within dust emission models will reduce uncertainty in estimates of the impact of wind erosion on SOC flux and provide an approach for the inclusion of wind erosion processes in carbon accounting systems.  相似文献   

10.
In recent years, the increase in Brazilian ethanol production has been based on expansion of sugarcane‐cropped area, mainly by the land use change (LUC) pasture–sugarcane. However, second‐generation (2G) cellulosic‐derived ethanol supplies are likely to increase dramatically in the next years in Brazil. Both these management changes potentially affect soil C (SOC) changes and may have a significant impact on the greenhouse gases balance of Brazilian ethanol. To evaluate these impacts, we used the DayCent model to predict the influence of the LUC native vegetation (NV)–pasture (PA)–sugarcane (SG), as well as to evaluate the effect of different management practices (straw removal, no‐tillage, and application of organic amendments) on long‐term SOC changes in sugarcane areas in Brazil. The DayCent model estimated that the conversion of NV‐PA caused SOC losses of 0.34 ± 0.03 Mg ha?1 yr?1, while the conversion PA‐SG resulted in SOC gains of 0.16 ± 0.04 Mg ha?1 yr?1. Moreover, simulations showed SOC losses of 0.19 ± 0.04 Mg ha?1 yr?1 in SG areas in Brazil with straw removal. However, our analysis suggested that adoption of some best management practices can mitigate these losses, highlighting the application of organic amendments (+0.14 ± 0.03 Mg C ha?1 yr?1). Based on the commitments made by Brazilian government in the UNFCCC, we estimated the ethanol production needed to meet the domestic demand by 2030. If the increase in ethanol production was based on the expansion of sugarcane area on degraded pasture land, the model predicted a SOC accretion of 144 Tg from 2020 to 2050, while increased ethanol production based on straw removal as a cellulosic feedstock was predicted to decrease SOC by 50 Tg over the same 30‐year period.  相似文献   

11.
It has been well recognized that converting wetlands to cropland results in loss of soil organic carbon (SOC), while less attention was paid to concomitant changes in methane (CH4) and nitrous oxide (N2O) emissions. Using datasets from the literature and field measurements, we investigated loss of SOC and emissions of CH4 and N2O due to marshland conversion in northeast China. Analysis of the documented crop cultivation area indicated that 2.91 Mha of marshland were converted to cropland over the period 1950–2000. Marshland conversion resulted in SOC loss of ~240 Tg and introduced ~1.4 Tg CH4 and ~138 Gg N2O emissions in the cropland, while CH4 emissions reduced greatly in the marshland, cumulatively ~28 Tg over the 50 years. Taking into account the loss of SOC and emissions of CH4 and N2O, the global warming potential (GWP) at a 20‐year time horizon was estimated to be ~180 Tg CO2_eq. yr?1 in the 1950s and ~120 Tg CO2_eq. yr?1 in the 1990s, with a ~33% reduction. When calculated at 100‐year time horizon, the GWP was ~73 Tg CO2 _eq. yr?1 in the 1950s and ~58 Tg CO2_eq. yr?1 in the 1990s, with a ~21% reduction. It was concluded that marshland conversion to cropland in northeast China reduced the greenhouse effect as far as GWP is concerned. This reduction was attributed to a substantial decrease in CH4 emissions from the marshland. An extended inference is that the declining growth rate of atmospheric CH4 since the 1980s might be related to global loss of wetlands, but this connection needs to be confirmed.  相似文献   

12.
The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15–50% slower when an erosion rate of 15 t soil ha?1 yr?1 was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3–1.0 t CO2 ha?1 yr?1. This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities.  相似文献   

13.
Field trials throughout Europe over the past 15 years have confirmed the potential for high biomass production from Miscanthus, a giant perennial rhizomatous grass with C4 photosynthesis. However, policies to promote the utilization of biomass crops require yield estimates that can be scaled up to regional, national and continental areas. The only way in which this information can be reliably provided is through the use of productivity models. Here, we describe MISCANMOD, a productivity model, which was used in conjunction with a GIS to plot potential, non‐water‐limited yields across Europe. Modelled rainfed yields were also calculated using a water balance approach based on FAO estimates of plant available water in the soil. The observed yields were consistent with modelled yields at 20 trial sites across Europe. We estimate that if Miscanthus was grown on 10% of suitable land area in the European Union (EU15), 231 TWh yr?1 of electricity could be generated, which is 9% of the gross electricity production in 2000. Using the same scenario, the total carbon mitigation could be 76 Mt C yr?1, which is about 9% of the EU total C emissions for the 1990 Kyoto Protocol baseline levels.  相似文献   

14.
Land‐use change (LUC) is a major driving factor for the balance of soil organic carbon (SOC) stocks and the global carbon cycle. The temporal dynamic of SOC after LUC is especially important in temperate systems with a long reaction time. On the basis of 95 compiled studies covering 322 sites in the temperate zone, carbon response functions (CRFs) were derived to model the temporal dynamic of SOC after five different LUC types (mean soil depth of 30±6 cm). Grassland establishment caused a long lasting carbon sink with a relative stock change of 128±23% and afforestation on former cropland a sink of 116±54%, 100 years after LUC (mean±95% confidence interval). No new equilibrium was reached within 120 years. In contrast, there was no SOC sink following afforestation of grasslands and 75% of all observations showed SOC losses, even after 100 years. Only in the forest floor, there was carbon accumulation of 0.38±0.04 Mg ha?1 yr?1 in afforestations adding up to 38±4 Mg ha?1 labile carbon after 100 years. Carbon loss after deforestation (?32±20%) and grassland conversion to cropland (?36±5%), was rapid with a new SOC equilibrium being reached after 23 and 17 years, respectively. The change rate of SOC increased with temperature and precipitation but decreased with soil depth and clay content. Subsoil SOC changes followed the trend of the topsoil SOC changes but were smaller (25±5% of the total SOC changes) and with a high uncertainty due to a limited number of datasets. As a simple and robust model approach, the developed CRFs provide an easily applicable tool to estimate SOC stock changes after LUC to improve greenhouse gas reporting in the framework of UNFCCC.  相似文献   

15.
Anthropogenically induced change in soil redistribution plays an important role in the soil organic carbon (SOC) budget. Uncertainty of its impact is large because of the dearth of recent soil redistribution estimates concomitant with changing land use and management practices. An Australian national survey used the artificial radionuclide caesium‐137 (137Cs) to estimate net (1950s–1990) soil redistribution. South‐eastern Australia showed a median net soil loss of 9.7 t ha?1 yr?1. We resurveyed the region using the same 137Cs technique and found a median net (1990–2010) soil gain of 3.9 t ha?1 yr?1 with an interquartile range from ?1.6 t ha?1 yr?1 to +10.7 t ha?1 yr?1. Despite this variation, soil erosion across the region has declined as a likely consequence of the widespread adoption of soil conservation measures over the last ca 30 years. The implication of omitted soil redistribution dynamics in SOC accounting is to increase uncertainty and diminish its accuracy.  相似文献   

16.
Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO2) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO2 and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO2 emission. We developed a first approximation to SOC enrichment for a well‐established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO2‐e yr?1) and Australian agricultural soils (0.4 Tg CO2‐e yr?1). These amount to underestimates for CO2 emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations’ C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind‐eroded SOC in the dust cycle is therefore essential to quantify the release of CO2 from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.  相似文献   

17.
Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long‐term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N2O) and methane (CH4) fluxes and SOC changes (ΔSOC) at a long‐term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha?1 yr?1, respectively) under no‐till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N2O and CH4 fluxes were measured for five crop‐years (2011–2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area‐ and yield‐scaled soil N2O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH4 neutral and CT a CH4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long‐term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface SOC stocks.  相似文献   

18.
Agricultural soils in China have been estimated to have a large potential for carbon sequestration, and modelling and literature survey studies have yielded contrasting results of soil organic carbon (SOC) stock change, ranging from ?2.0 to +0.6% yr?1. To assess the validity of earlier estimates, we collected 1394 cropland soil profiles from all over the country and measured SOC contents in 2007–2008, and compared them with those of a previous national soil survey conducted in 1979–1982. The results showed that average SOC content in the 0–20 cm soil increased from 11.95 g kg?1 in 1979–1982 to 12.67 g kg?1 in 2007–2008, averaging 0.22% yr?1. The standard deviation of SOC contents decreased. Four major soil types had statistically significant changes in their mean SOC contents for 0–20 cm. These were: +7.5% for Anthrosols (paddy soils), +18.3% for Eutric Cambisols, +30.5% for Fluvisols, and ?22.3% for Chernozems. The change of SOC contents showed a negative relationship with the average SOC contents of the two sampling campaigns only when soils in the region south of Yangtse River were excluded. SOC contents of the two major soil types in the region south of Yangtse River, i.e., Haplic Alisols/Haplic Acrisols and Anthrosols (paddy soils), changed little or significantly increased, though with a high SOC content. We suggest that the increase of SOC content is mainly attributed to the large increase in crop yields since the 1980s, and the short history as cropland establishment is mainly responsible for the decrease in SOC content for some soil types and regions showing a SOC decline.  相似文献   

19.
Agricultural management has received increased attention over the last decades due to its central role in carbon (C) sequestration and greenhouse gas mitigation. Yet, regardless of the large body of literature on the effects of soil erosion by tillage and water on soil organic carbon (SOC) stocks in agricultural landscapes, the significance of soil redistribution for the overall C budget and the C sequestration potential of land management options remains poorly quantified. In this study, we explore the role of lateral SOC fluxes in regional scale modelling of SOC stocks under three different agricultural management practices in central Belgium: conventional tillage (CT), reduced tillage (RT) and reduced tillage with additional carbon input (RT+i). We assessed each management scenario twice: using a conventional approach that did not account for lateral fluxes and an alternative approach that included soil erosion‐induced lateral SOC fluxes. The results show that accounting for lateral fluxes increased C sequestration rates by 2.7, 2.5 and 1.5 g C m?2 yr?1 for CT, RT and RT+i, respectively, relative to the conventional approach. Soil redistribution also led to a reduction of SOC concentration in the plough layer and increased the spatial variability of SOC stocks, suggesting that C sequestration studies relying on changes in the plough layer may underestimate the soil's C sequestration potential due to the effects of soil erosion. Additionally, lateral C export from cropland was in the same of order of magnitude as C sequestration; hence, the fate of C exported from cropland into other land uses is crucial to determine the ultimate impact of management and erosion on the landscape C balance. Consequently, soil management strategies targeting C sequestration will be most effective when accompanied by measures that reduce soil erosion given that erosion loss can balance potential C uptake, particularly in sloping areas.  相似文献   

20.
Bottom–up estimates from long‐term field experiments and modelling are the most commonly used approaches to estimate the carbon (C) sequestration potential of the agricultural sector. However, when data are required at European level, important margins of uncertainty still exist due to the representativeness of local data at large scale or different assumptions and information utilized for running models. In this context, a pan‐European (EU + Serbia, Bosnia and Herzegovina, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) simulation platform with high spatial resolution and harmonized data sets was developed to provide consistent scenarios in support of possible carbon sequestration policies. Using the CENTURY agroecosystem model, six alternative management practices (AMP) scenarios were assessed as alternatives to the business as usual situation (BAU). These consisted of the conversion of arable land to grassland (and vice versa), straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops. The conversion into grassland showed the highest soil organic carbon (SOC) sequestration rates, ranging between 0.4 and 0.8 t C ha?1 yr?1, while the opposite extreme scenario (100% of grassland conversion into arable) gave cumulated losses of up to 2 Gt of C by 2100. Among the other practices, ley cropping systems and cover crops gave better performances than straw incorporation and reduced tillage. The allocation of 12 to 28% of the European arable land to different AMP combinations resulted in a potential SOC sequestration of 101–336 Mt CO2 eq. by 2020 and 549‐2141 Mt CO2 eq. by 2100. Modelled carbon sequestration rates compared with values from an ad hoc meta‐analysis confirmed the robustness of these estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号