首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Staphylococcus aureus is responsible for a broad variety of chronic infections. Most S. aureus clinical isolates show the capacity to adhere to abiotic surfaces and to develop biofilms. Because S. aureus growing in a biofilm is highly refractory to treatment, inhibition of biofilm formation represents a major therapeutic objective. We evaluated the effects of oleic acid on primary adhesion and biofilm production in eight genotypically different S. aureus strains as well as in the biofilm-negative Staphylococcus carnosus strain TM300. Oleic acid inhibited primary adhesion but increased biofilm production in every S. aureus strain tested. Staphylococcus aureus strain UAMS-1 was then selected as a model organism for studying the mechanisms triggered by oleic acid on the formation of a biofilm in vitro. Oleic acid inhibited the primary adhesion of UAMS-1 dose dependently with an IC(50) around 0.016%. The adherent bacterial population decreased proportionally with increasing concentrations of oleic acid whereas an opposite effect was observed on the planktonic population. Overall, the total bacterial counts remained stable. Macroscopic detachments and clumps were visible from the adherent bacterial population. In the presence of oleic acid, the expression of sigB, a gene potentially involved in bacterial survival through an effect on fatty acid composition, was not induced. Our results suggest a natural protective effect of oleic acid against primary adhesion.  相似文献   

4.
5.
6.
The biofilm formation capacity of Staphylococcus aureus clinical isolates is considered an important virulence factor for the establishment of chronic infections. Environmental conditions affect the biofilm formation capacity of S. aureus, indicating the existence of positive and negative regulators of the process. The majority of the screening procedures for identifying genes involved in biofilm development have been focused on genes whose presence is essential for the process. In this report, we have used random transposon mutagenesis and systematic disruption of all S. aureus two-component systems to identify negative regulators of S. aureus biofilm development in a chemically defined medium (Hussain-Hastings-White modified medium [HHWm]). The results of both approaches coincided in that they identified arlRS as a repressor of biofilm development under both steady-state and flow conditions. The arlRS mutant exhibited an increased initial attachment as well as increased accumulation of poly-N-acetylglucosamine (PNAG). However, the biofilm formation of the arlRS mutant was not affected when the icaADBC operon was deleted, indicating that PNAG is not an essential compound of the biofilm matrix produced in HHWm. Disruption of the major autolysin gene, atl, did not produce any effect on the biofilm phenotype of an arlRS mutant. Epistatic experiments with global regulators involved in staphylococcal-biofilm formation indicated that sarA deletion abolished, whereas agr deletion reinforced, the biofilm development promoted by the arlRS mutation.  相似文献   

7.
8.
9.
【背景】金黄色葡萄球菌是一种常见的食源性致病菌,易在食品及加工器具表面形成生物膜,引起食品腐败和疾病的传播,威胁食品安全。【目的】研究冬凌草甲素抑制金黄色葡萄球菌生物膜形成的作用机制。【方法】使用结晶紫染色法和扫描电镜观察冬凌草甲素对金黄色葡萄球菌生物膜形成的抑制作用,刚果红平板法定性检测冬凌草甲素对细胞间多糖黏附素(polysaccharideintercellular adhesion,PIA)合成的影响,分光光度法测定冬凌草甲素对供试菌株胞外DNA (eDNA)释放量的影响,RT-PCR技术检测冬凌草甲素对供试菌株ica A、cid A、agr A和sar A基因表达量的影响。【结果】冬凌草甲素对金黄色葡萄球菌生物膜形成有较强的抑制作用;冬凌草甲素能显著抑制PIA的合成,且呈浓度剂量依赖;冬凌草甲素能抑制供试菌株e DNA的释放量,其中1/4最小抑菌浓度(minimum inhibitory concentration,MIC)的冬凌草甲素作用金黄色葡萄球菌16 h后,与对照组相比,e DNA的释放量降低了48.62%;冬凌草甲素可显著抑制金黄色葡萄球菌生物膜形成相关基因的表达,其中1/2MIC的冬凌草甲素作用金黄色葡萄球菌16 h后,ica A、cid A、agr A和sar A基因的表达量分别比对照降低了91.6%、94.7%、77.6%和70.4%。【结论】冬凌草甲素通过抑制ica A和cid A基因的表达,影响PIA的合成和eDNA的释放,进而干预生物膜的形成。  相似文献   

10.
11.
This study was designed to evaluate gene expression patterns of the planktonic and biofilm cells of Staphylococcus aureus and Salmonella Typhimurium in trypticase soy broth adjusted to pH 5.5 and pH 7.3. The planktonic and biofilm cells of multiple antibiotic-resistant S. aureus (S. aureus(R) ) and S. Typhimurium (S. Typhimurium(R) ) were more resistant to β-lactams than those of antibiotic-susceptible S. aureus (S. aureus(S) ) and S. Typhimurium (S. Typhimurium(S) ) at pH 5.5 and pH 7.3. The relative gene expression levels of norB, norC, and mdeA genes were increased by 7.0-, 4.7-, and 4.6-fold, respectively, in the biofilm cells of S. aureus(S) grown at pH 7.3, while norB, norC, mdeA, sec, seg, sei, sel, sem, sen, and seo genes were stable in the biofilm cells of S. aureus(R) . This study provides useful information for understanding gene expression patterns in the planktonic and biofilm cells of antibiotic-resistance pathogens exposed to acidic stress.  相似文献   

12.
13.
14.
15.
One-dimensional polyacrylamide gel electrophoresis followed by nanocapillary liquid chromatography coupled with mass spectrometry was used to analyze proteins isolated from Staphylococcus aureus UAMS-1 after 3, 6, 12, and 24 h of in vitro growth. Protein abundance was determined using a quantitative value termed normalized peptide number, and overall, proteins known to be associated with the cell wall were more abundant early on in growth, while proteins known to be secreted into the surrounding milieu were more abundant late in growth. In addition, proteins from spent media and cell lysates of strain UAMS-1 and its isogenic sarA, agr, and sarA agr regulatory mutant strains during exponential growth were identified, and their relative abundances were compared. Extracellular proteins known to be regulated by the global regulators sarA and agr displayed protein levels in accordance with what is known regarding the effects of these regulators. For example, cysteine protease (SspB), endopeptidase (SspA), staphopain (ScpA), and aureolysin (Aur) were higher in abundance in the sarA and sarA agr mutants than in strain UAMS-1. The immunoglobulin G (IgG)-binding protein (Sbi), immunodominant staphylococcal antigen A (IsaA), IgG-binding protein A (Spa), and the heme-iron-binding protein (IsdA) were most abundant in the agr mutant background. Proteins whose abundance was decreased in the sarA mutant included fibrinogen-binding protein (Fib [Efb]), IsaA, lipase 1 and 2, and two proteins identified as putative leukocidin F and S subunits of the two-component leukotoxin family. Collectively, this approach identified 1,263 proteins (matches of two peptides or more) and provided a convenient and reliable way of identifying proteins and comparing their relative abundances.  相似文献   

16.
17.
18.
19.
JL Bose  MK Lehman  PD Fey  KW Bayles 《PloS one》2012,7(7):e42244
The most prominent murein hydrolase of Staphylococcus aureus, AtlA, is a bifunctional enzyme that undergoes proteolytic cleavage to yield two catalytically active proteins, an amidase (AM) and a glucosaminidase (GL). Although the bifunctional nature of AtlA has long been recognized, most studies have focused on the combined functions of this protein in cell wall metabolism and biofilm development. In this study, we generated mutant derivatives of the clinical S. aureus isolate, UAMS-1, in which one or both of the AM and GL domains of AtlA have been deleted. Examination of these strains revealed that each mutant exhibited growth rates comparable to the parental strain, but showed clumping phenotypes and lysis profiles that were distinct from the parental strain and each other, suggesting distinct roles in cell wall metabolism. Given the known function of autolysis in the release of genomic DNA for use as a biofilm matrix molecule, we also tested the mutants in biofilm assays and found both AM and GL necessary for biofilm development. Furthermore, the use of enzymatically inactive point mutations revealed that both AM and GL must be catalytically active for S. aureus to form a biofilm. The results of this study provide insight into the relative contributions of AM and GL in S. aureus and demonstrate the contribution of Atl-mediated lysis in biofilm development.  相似文献   

20.
The sarA locus of Staphylococccus aureus regulates the synthesis of over 100 genes on the S. aureus chromosome. We now report the effects of sarA inactivation on intrinsic multidrug resistance expression by S. aureus. In a strain-dependent fashion, sarA::kan mutants of three unrelated strains of S. aureus demonstrated significantly increased susceptibility to five or more of the following substances: the antibiotics ciprofloxacin, fusidic acid, and vancomycin; the DNA-intercalating agent ethidium; and four common household cleaner formulations. In addition, all three sarA::kan mutants demonstrated significantly increased accumulation of ciprofloxacin and one sarA::kan mutant demonstrated increased ethidium accumulation. Our data therefore indicate that sarA plays a role in the intrinsic multidrug resistance mechanism expressed by S. aureus, in part by regulating drug accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号