首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corneal tolerance of vitrifiable concentrations of propane-1,2-diol   总被引:4,自引:0,他引:4  
S J Rich  W J Armitage 《Cryobiology》1991,28(2):159-170
The merit of corneal cryopreservation by vitrification as opposed to conventional freezing is the avoidance of ice damage which is believed to disrupt the integrity of the corneal endothelium resulting in loss of corneal transparency. The cornea must be equilibrated with high concentrations of cryoprotectant in order to achieve vitrification at practicable cooling rates. In an earlier study, corneas were exposed to 3.4 mol/liter propane-1,2-diol (Rich and Armitage (1990) Cryobiology 27, 42-54). The present study exposed rabbit corneas to concentrations of propane-1,2-diol between 3.4 and 5.4 mol/liter in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, 6% (w/v) bovine serum albumin, and 2.5% (w/v) dextran sulfate. Dextran sulfate was as effective as chondroitin sulfate at improving endothelial tolerance of 3.4 mol/liter propane-1,2-diol. This beneficial effect may be linked to the polyanionic nature of these molecules. Corneas exposed to 5.4 mol/liter propane-1,2-diol were cooled in liquid nitrogen vapor at a temperature of -140 degrees C for 2 h. Warming was achieved by direct transfer to a dilution solution at -10 degrees C. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 h. Endothelial structure was observed by specular microscopy during the perfusion and by scanning electron microscopy after perfusion. Corneas tolerated exposure to 3.4 mol/liter propane-1,2-diol for 20 min at 0 degrees C and to 4.1 mol/liter for 10 min at -10 degrees C. Exposure to 4.8 and 5.4 mol/liter for 10 min at -10 degrees C caused endothelial damage, although a degree of endothelial function was retained. Function following exposure to 5.4 mol/liter was improved by reducing the temperature of exposure to -15 degrees C. Corneas cooled after exposure to 5.4 mol/liter propane-1,2-diol for 10 min at -15 degrees C apparently vitrified, but devitrified on warming. The corneas swelled to such an extent during perfusion that the endothelium could not be viewed by specular microscopy, subsequent scanning electron microscopy showed a severely disrupted endothelium.  相似文献   

2.
Any method of cryopreservation of the cornea must maintain integrity of the corneal endothelium, a monolayer of cells on the inner surface of the cornea that controls corneal hydration and keeps the cornea thin and transparent. During freezing, the formation of ice damages the endothelium, and vitrification has been suggested as a means of achieving ice-free cryopreservation of the cornea. To achieve vitrification at practicable cooling rates, tissues must be equilibrated with high concentrations of cryoprotectants. In this study, the effects of propane-1,2-diol on the structure and function of rabbit corneal endothelium were studied. Corneas were exposed to concentrations of propane-1,2-diol ranging from 10 to 30% v/v in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, and 6% w/v bovine serum albumin. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 hr. Exposure to 10-15% v/v propane-1,2-diol was well tolerated for 20 min at 4 degrees C when the cryoprotectant was removed in steps or by sucrose dilution. However, exposure to 25% v/v propane-1,2-diol for 20 min at 0 or -5 degrees C was consistently tolerated only when 2.5% w/v chondroitin sulfate was included in the vehicle solution. Exposure to 30% v/v propane-1,2-diol was harmful at -5 and -10 degrees C. The endothelial damage following exposure to 30% v/v propane-1,2-diol was probably the result of a toxic effect rather than osmotic stress. Although 25% v/v propane-1,2-diol does not vitrify at cooling rates that are practicable for corneas, it could at this concentration form a major component of a vitrification solution comprising a mixture of cryoprotectants.  相似文献   

3.
W J Armitage 《Cryobiology》1989,26(4):318-327
Corneal endothelium, a monolayer of cells lining the inner surface of the cornea, is particularly susceptible to freezing injury. Ice formation damages the structural and functional integrity of the endothelium, and this results in a loss of corneal transparency. Instead of freezing, an alternative method of cryopreservation is vitrification, which avoids damage associated with ice formation. Vitrification at practicable cooling rates, however, requires exposure of tissues to very high concentrations of cryoprotectants, and this can cause damage through chemical toxicity and osmotic stress. The effects of a vitrification solution (VS1) containing 2.62 mol/liter (20.5%, w/v) dimethyl sulfoxide, 2.62 mol/liter (15.5%, w/v) acetamide, 1.32 mol/liter (10%, w/v) propane-1,2-diol, and 6% (w/v) polyethylene glycol were studied on corneal endothelium. Endothelial function was assessed by monitoring corneal thickness during 6 hr of perfusion at 35 degrees C with a Ringer solution supplemented with glutathione and adenosine. Various dilutions of the vitrification solution were introduced and removed in a stepwise manner to mitigate osmotic stress. Survival of endothelium after exposure to VS1 or a solution containing 90% of the cryoprotectant concentrations in VS1 (90% VS1) was dependent on the duration of exposure, the temperature of exposure, and the dilution protocol. The basic dilution protocol was performed at 25 degrees C: corneas were transferred from 90% VS1 or VS1 into 50% VS1 for 15 min, followed by 25% VS1 for 15 min and finally into isosmotic Ringer solution. Using this protocol, corneal endothelium survived exposure to 90% VS1 for 15 min at -5 degrees C, but 5 min in VS1 at -5 degrees C was harmful and resulted in some very large and misshapen endothelial cells. This damage was not ameliorated by using a sucrose dilution technique; but endothelial function was improved when the temperature of exposure to VS1 was reduced from -5 to -10 degrees C. Exposure to VS1 for 5 min at -5 degrees C was well tolerated, however, when the temperature of the first dilution step into 50% VS1 was reduced from 25 to 0 degree C. The large, misshapen cells were not observed under these conditions nor after exposure to VS1 at -10 degrees C. These results suggested that damage was the result of cryoprotectant toxicity rather than osmotic stress. Thus, corneal endothelium survived exposure to two solutions of cryoprotectants, namely, 90% VS1 and VS1, that were sufficiently concentrated to vitrify. Whether corneas can be cooled fast enough in these solutions to achieve vitrification and warmed fast enough to avoid devitrification remains to be determined.  相似文献   

4.
Corneal tolerance of vitrifiable concentrations of glycerol.   总被引:1,自引:0,他引:1  
S J Rich  W J Armitage 《Cryobiology》1992,29(2):153-164
Equilibration of corneas with sufficiently high concentrations of cryoprotectants to inhibit potentially damaging ice formation during cryopreservation has not yet been achieved. This study examined the effects on the structure and function of rabbit corneal endothelium of the low toxicity cryoprotectant glycerol. Corneas were exposed to concentrations ranging from 2.0 to 6.8 M glycerol in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mM sodium bicarbonate and 6% w/v bovine serum albumin. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 h. Endothelial structure was observed using specular microscopy during perfusion and scanning electron microscopy after perfusion. Corneas tolerated exposure to 2.0 and 3.4 M glycerol for 20 min at 4 and -5 degrees C, respectively. Tolerance of 4.8 M glycerol for 10 min at -10 degrees C was improved by decreasing the dilution temperatures. Ten-minute exposure to 6.1 and 6.8 M glycerol was tolerated at -15 degrees C. In all cases corneas initially showed signs of damage but endothelial function was regained following structural repair. Corneas exposed to 6.8 M glycerol and cooled below the glass transition temperature were nonfunctional after warming. Ice formation during warming was believed to be the cause of injury.  相似文献   

5.
AIM: To investigate the influence of low cooling rates on endothelial function and morphology of corneas frozen with propane-1,2-diol (PROH). METHODS: Rabbit corneas, mounted on support rings, were exposed to 1.4mol/l (10% v/v) PROH, seeded to initiate freezing, and cooled at 0.2 or 1 degrees C/min to -80 degrees C. Corneas were frozen immersed in liquid or suspended in air. After being held overnight in liquid nitrogen, corneas were warmed at 1 or 20 degrees C/min. After stepwise removal of the cryoprotectant, the ability of the endothelium actively to control corneal hydration was monitored during normothermic perfusion. Morphology was assessed after staining with trypan blue and alizarin red S, and by specular microscopy during perfusion. RESULTS: Functional survival was achieved only after slow cooling (0.2 degrees C/min) with the cornea immersed in the cryoprotectant medium, and rapid warming (20 degrees C/min). These conditions also gave the best morphology after freezing and thawing. CONCLUSION: Cooling rates lower than those typically applied to cornea improved functional survival of the endothelium. This result is in accord with previous observations showing the benefit of low cooling rates for cell monolayers [CryoLetters 17 (1996) 213-218].  相似文献   

6.
As an initial step in the development of a method for corneal cryopreservation by vitrification, we attempted to establish the maximum concentration of glycerol to which human corneal endothelium could be exposed at 4 degrees C for 15 min without damage. Damage was defined as an increase in mean endothelial cell size or the inability to maintain corneal thickness for 1 week after exposure to glycerol. Using a system for long-term corneal perfusion, we perfused 24 paired human corneas with glycerol at 4 degrees C. The concentration of glycerol increased at a rate of 20% (w/v) (2.2 M) per hour until the desired maximum concentration was reached for that cornea, stabilized for 15 min, and then decreased at the same rate. The corneas were then perfused at 37 degrees C with Dulbecco's medium at a rate of 5 microliters/min under 18 mm Hg intracameral pressure for 7 days with daily measurements of corneal thickness. Endothelial morphology was examined by specular microscopy and by scanning electron microscopy. After 7 days of perfusion at 37 degrees C, there was a statistically significant direct relationship between the maximum concentration of glycerol to which the experimental eyes had been exposed and the increase in mean endothelial cell size. The mean endothelial cell size increased in corneas exposed to glycerol concentrations of 40, 50, and 60% (w/v), but did not differ significantly from baseline measurements in the corneas exposed to 30% glycerol or less. Thus, there was no detectable damage to human corneas exposed to 30% (w/v) (3.3 M) glycerol in this system. Tolerance of higher concentrations may be achieved by changes in the rates of addition and removal of glycerol or in the composition of the perfusate.  相似文献   

7.
Effects of osmotic stress on rabbit corneal endothelium   总被引:1,自引:0,他引:1  
The effects of osmotic stress on corneal endothelium were investigated by exposing rabbit corneas to anisosmotic conditions, and then perfusing the corneas with isosmotic glutathione bicarbonate Ringer solution for 4 hr at 35 degrees C. During the perfusion, endothelial function was assessed by measuring corneal thickness with a specular microscope. After perfusion, the corneas were prepared for scanning and transmission electron microscopy. Endothelial ultrastructure and function were well maintained after exposure to a wide range of osmolality (0.12-2.7 osmol/kg), but this tolerance of osmotic stress was dependent both on the duration and the temperature of exposure to the anisosmotic conditions. Exposure to an osmolality of 2.7 osmol/kg for 15 min at 23 or 37 degrees C resulted in gross damage to the endothelium when the hyperosmotic agent was sodium chloride. This damage was not the result of increased osmolality per se nor cellular shrinkage because the endothelium tolerated exposure to a sucrose solution of the same osmolality for 15 min at 37 degrees C. The detrimental effect of sodium chloride, however, was mitigated by reducing the temperature of exposure to 0 degrees C or reducing the duration of exposure to 5 min. These results suggest that endothelial cells become more tolerant of high electrolyte concentrations with reducing temperature, and this could be an important factor in the survival of the endothelium in corneal cryopreservation. The results also help to define the limits of osmotic shrinkage and swelling tolerated by endothelial cells. This will be of value in overcoming the detrimental osmotic effects associated with the addition and, in particular, the removal of cryoprotectants.  相似文献   

8.
Cryopreservation of platelets depends on the use of cryoprotectants to reduce freezing damage. However, the cryoprotectants may in themselves be harmful, and it is important to determine the amount of damage caused by these compounds. Platelets were incubated at 37 °C in plasma containing 0, 0.5 and 1.0 mol/liter glycerol. The aggregation response to 10 and 5 μmol/liter ADP was determined after 2, 15, 30, 60, and 120 min of incubation. Samples were prepared for electron microscopy after 30 min at 37 °C. Glycerol at a concentration of 0.5 mol/liter had no effect on the extent of aggregation, whereas 1.0 mol/liter glycerol caused a progressive decline in the response. However, platelet ultrastructure appeared to be undisturbed by 1.0 mol/liter glycerol. The results demonstrated a lack of toxicity of 0.5 mol/liter glycerol and support the use of glycerol at concentrations less than 1.0 mol/liter for cryopreservation.  相似文献   

9.
High concentrations of membrane permeable cryoprotectants are necessary to protect human polymorphonuclear leukocytes from osmotic stress injury during freezing, but there are reports that some cryoprotectants are chemically toxic. Cells were exposed to various concentrations of glycerol, dimethyl sulfoxide, or ethylene glycol for 5 min to 2 hr at 37, 22 or 0 degree C, adding or removing the cryoprotectant either slowly or rapidly. Assays included cell number recovery, membrane integrity, phagocytosis, microbicidal ability, and chemotaxis. We conclude that (1) 1 and 2 M concentrations generally are not toxic if they are added and removed slowly at 22 degrees C; (2) addition and removal of glycerol at 0 degree C was injurious even at 1 M; (3) slow addition and removal allowed better recovery than rapid addition or removal; (4) salt concentration in cryoprotectant solutions should be adjusted to isotonic on the basis of moles per liter of solution, rather than moles per kilogram of water; (5) the toxicity reported by other investigators can be largely explained by osmotic stress or dilution shock rather than chemical toxicity; and (6) ethylene glycol is the easiest cryoprotectant to add to and remove from these cells.  相似文献   

10.
Corneal cryopreservation with dextran.   总被引:3,自引:0,他引:3  
Different methods of corneal cryopreservation have been introduced, those employing intracellular cryoprotectants such as Me2SO or glycerol being the most widely favored. We investigated the influence of several freeze-thaw trauma variables on the survival of porcine endothelial monolayers when employing the extracellular cryoprotective agent dextran. We first examined the effects of various dextran concentrations and then, having ascertained the optimal concentration, further investigated the influence of fetal calf serum (FCS) concentration in the cryopreservation medium, the cooling rate, the thawing temperature, and the length of the preincubation in the freezing medium prior to cryopreservation. The numerical densities of endothelial cells were determined at dissection in hypoosmotic balanced salt solution and after organ culture by staining with alizarin red S and trypan blue. Morphological evaluation was not performed directly after thawing but after a subsequent organ culture at 37 degrees C to detect latent cell damage after freeze-thaw trauma. Our data revealed that corneas cryopreserved in minimal essential medium containing 10% dextran but lacking FCS, preincubated for 3 h, frozen at a cooling rate of 1 degrees C/min, and thawed at 37 degrees C incurred the lowest cell losses (22.4%, SD +/- 3.8). We conclude that dextran is an effective cryoprotectant for freezing of porcine corneas. However, variations between species in the results of cryopreservation require further investigation of an in vivo animal model and studies with human corneas before its clinical use can be recommended.  相似文献   

11.
We investigated the effects of cryoprotectants (glycerol, propane-1, 2-diol, dimethyl sulfoxide) on the ability of epithelial cells to assemble intercellular junctions. Madin-Darby canine kidney cells (MDCK, type II) were grown in S-MEM containing only 5 micromol/L Ca(2+) to allow attachment of cells to the growth surface but not the development of the junctional complex. In a first set of experiments, cells were exposed to 10% v/v cryoprotectant at room temperature for 30 min. After removal of the cryoprotectant, [Ca(2+)] was increased to 1.8 mmol/L (Ca-switch) and the assembly of junctions was followed immunocytochemically and by monitoring transepithelial resistance (TER). In a second set of experiments, the development of junctions was followed in the presence of 1% cryoprotectant. Addition and removal of 10% cryoprotectant had little effect on the assembly of junctions following the Ca-switch, with TER peaking >300 ohm cm(2) after 24 h. Immunocytochemical staining showed recruitment to cell borders of components of tight junctions, adherens junctions, and desmosomes and the presence of a distinct circumferential bundle of actin filaments. In the presence of 1% cryoprotectant, there was a lag of more than 20 h before TER began to rise. There was then a progressive rise in TER in all three cryoprotectant groups, indicating junction assembly, albeit at a lower rate than that in the absence of cryoprotectant. These results suggest that exposure to cryoprotectants per se will not inhibit cellular repair mechanisms aimed at restoring the integrity of epithelial cell layers, but incomplete removal of cryoprotectant may delay repair.  相似文献   

12.
Cryoinjury in endothelial cell monolayers   总被引:1,自引:0,他引:1  
Developing successful cryopreservation strategies for corneas have proven to be more difficult than anticipated, because of the resulting loss of viability and detachment of endothelial cells from Descemet's membrane following cryopreservation of corneas. The objectives of this study are to develop a more detailed understanding of cryoinjury in human corneal endothelial cell (HCEC) monolayers and to examine the effects of storage temperature, cryoprotectant type and concentration, and cooling/warming rates on HCEC monolayers. Monolayers of endothelial cells attached to collagen-coated glass, immersed in an experimental solution (with and without cryoprotectant) were cooled at 1 degrees C/min to various temperatures (-5 to -40 degrees C), then thawed directly or cooled rapidly to -196 or to -80 degrees C before thawing. Cryoprotectants used were dimethyl sulfoxide and propylene glycol in concentrations of 1 and 2M. Monolayers were assessed for membrane integrity and detachment using SYTO/ethidium bromide fluorescent stain. The presence of cryoprotectants resulted in high recovery of membrane integrity and low monolayer detachment in monolayers thawed directly from temperatures down to -40 degrees C. In contrast, there was excessive detachment and loss of membrane integrity in monolayers cooled to -196 degrees C compared to monolayers cooled to -80 degrees C. Also, increasing cryoprotectant concentrations did not improve recovery of the monolayers. The higher recovery and lower detachment after storage at -80 degrees C compared to storage at -196 degrees C suggest that storage temperatures for corneas should be re-evaluated.  相似文献   

13.
The nonsolvent volume, b, of a cell permits calculation of cell water volume from measurements of total cell volume, and, consequently, it is used extensively in the determination of membrane permeability coefficients for water and solutes and also in simulations of water and solute fluxes during freezing of cells. The nonsolvent volume is most commonly determined from the ordinate intercept of plots of cell volume as a function of the reciprocal of extracellular nonpermeating solute concentration (so-called Boyle-van't Hoff plots). Once derived, b is often assumed to be constant even under conditions that may differ markedly from those under which it was determined. Our aim was to investigate whether this assumption was valid when cells were exposed to the cryoprotectants glycerol, dimethyl sulphoxide (Me2SO), or propane-1,2-diol. Rabbit corneal keratocytes, a fibroblastic cell type, were exposed to 10% (v/v) cryoprotectant for 30 min at 22°C in solutions containing a range of nonpermeating solute concentrations. Cell volumes were determined by an electronic particle sizer and mode volume plotted as an inverse function of the concentration of nonpermeating solute. The cells behaved as osmometers under all conditions studied, but we found no evidence to suggest that the nonsolvent volume of cells was altered by Me2SO or propane-1,2-diol. Glycerol, however, reduced the slope of the Boyle-van't Hoff plot, but this could be ascribed to the failure of the cells to equilibrate fully with the glycerol over the 30 min exposure time; thus, b was unaffected by glycerol. It may be assumed, therefore, that the nonsolvent volume was not influenced by the presence inside cells of any of these nonelectrolyte cryoprotectants. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Vitrification media: toxicity,permeability, and dielectric properties   总被引:9,自引:0,他引:9  
The aim of this study was to select a cryoprotectant for use in attempts to preserve tissues and organs by vitrification. The first step was to select a cell line with which to compare the toxicity of a range of commonly used cryoprotectants. An immortal vascular endothelial cell (ECV304) was exposed to vitrifying concentrations of four cryoprotectants: dimethyl sulfoxide (Me(2)SO; 45% w/w); 2,3 butanediol (BD; 32%); 1,2-propanediol (PD; 45%); and ethanediol (ED; 45%). Three times of exposure (1, 3, and 9 min) and two temperatures (22 and 2-4 degrees C) were studied. After removal of the cryoprotectant, the ability of the cells to adhere and divide in culture over a 2-day period was measured and expressed as a Cell Survival Index (CSI). There was no measurable loss of cells after exposure to the four cryoprotectants but 3-min exposure to BD, PD, or Me(2)SO at room temperature completely destroyed the ability of the cells to adhere and divide in culture. In contrast, exposure to all four cryoprotectants at 2-4 degrees C for up to 9 min permitted the retention of significant cell function, the CSIs, as a proportion of control, being 76.3+/-7.0% for BD, 63.6+/-7.1% for PD, 37.0+/-4.1 for Me(2)SO, and 33.2+/-3.0 for ED. The permeability properties of the cells for these four cryoprotectants was also measured at each temperature. Permeability to water was high, L(p) approximately equal 10(-7) cm/s/atm at 2-4 degrees C with all the cryoprotectants, but there were substantial differences in solute permeability: BD and PD were the most permeable at 2-4 degrees C (P(s)=4.1 and 3.0 x 10(-6) cm/s, respectively). Equilibration of intracellular cryoprotectant concentration was rapid, due in part to high water permeability; the cells were approximately 80% of their physiological volume after 10 min. Treatment at 2-4 degrees C with BD was the least damaging, but PD was not significantly worse. Exposure to vitrifying concentrations of ED and Me(2)SO, even at 2-4 degrees C, was severely damaging. Segments of rabbit carotid artery were treated with vitrifying concentrations of each of the two most favorable cryoprotectants, BD and PD, for 9 min. It was shown that each cryoprotectant reduced smooth muscle maximum contractility to a similar extent and abolished the acetylcholine response. However, vital staining revealed that exposure to BD also caused substantial damage to the endothelial lining, whereas the endothelium was completely intact after PD exposure, raising the possibility that the effect of PD on NO release may be reversible. In later stages of this project it is planned to use dielectric heating to rewarm the tissues and thereby avoid devitrification. The effects of each cryoprotectant on this mode of heating was therefore studied. Gelatin spheres containing vitrifiable concentrations of each cryoprotectant were rewarmed from -60 degrees C in a radiofrequency applicator. Because the uniformity of heating is related to the dielectric properties of the material, these properties were also measured. PD was the most suitable. These physical measurements, combined with the measurements of toxicity and permeability, indicate that PD is the most favorable cryoprotectant of those tested for use in subsequent stages of this study.  相似文献   

15.
F G Arnaud  C J Hunt  D E Pegg 《Cryobiology》1990,27(2):119-129
The Kedem-Katchalsky equations and permeability data previously reported (F. G. Arnaud and D. E. Pegg. Permeation of glycerol and propane-1,2-diol into human platelets. Cryobiology 27, 130-136, 1990) have been used to design methods for adding and removing propane-1,2-diol (propylene glycol, PG) with human platelets. Mean platelet volume was kept within the tolerated range of 60 to 120% of normal. PG concentrations of 0.5, 1.0, 2.0, 2.5, and 3.0 M were studied at 2, 21, and 37 degrees C. PG was removed only at 21 degrees C. The effects of concentration of PG, temperature, and duration of exposure on the hypotonic stress response and ADP-induced aggregation were measured. It was found that platelets would tolerate exposure to PG concentrations up to 2 M at 21 or 2 degrees C for up to 15 min. The extent of damage increased considerably at higher temperatures and concentrations. These data provide the necessary basis for experiments to cryopreserve platelets with PG.  相似文献   

16.
Cryopreservation of murine embryos with trehalose and glycerol   总被引:6,自引:1,他引:5  
Several concentrations of trehalose (0.0, 0.04, 0.1, 0.25 M) in combination with three concentrations of glycerol (1.0, 1.5, 2.0 M) were evaluated for the cryopreservation of murine embryos. Embryos were transferred through increasing concentrations of glycerol in Dulbecco's phosphate-buffered saline with 10% fetal calf serum (PBS + FCS) to reach the final glycerol concentrations. They were then randomly assigned to one of the concentrations of trehalose. A total of 506 morulae were packaged individually in 0.25-ml plastic straws and cooled from ambient temperature at 1.0 degrees C/min in a programmable methanol freezer. Embryos were seeded at -7 degrees C and then cooled to -25 degrees C at 0.3 degrees C/min before being plunged into liquid nitrogen. After thawing and a one-step dilution of glycerol, embryos were cultured for 48 hr and viability was determined by blastocoel formation. Highest viability (70.0%) after 48 hr in culture was obtained for embryos frozen in 1.5 M glycerol plus 0.10 M trehalose as compared to 31% viability for embryos frozen with glycerol alone. These observations suggest that trehalose can be used in combination with glycerol as a cryoprotectant and that a high rate of viability can be achieved after a one-step dilution of the cryoprotectants.  相似文献   

17.
The purpose of the present study was to set up and test a cryopreservation method for long-term storage of human corneas. Therefore the freezing solution was optimized in 264 rabbit corneas by testing the type of cryoprotectant, its concentration, addition and dilution pattern and exposure temperature. Then rabbit corneas were frozen in the optimum solution at different cooling rates and thawed in a water bath at different temperatures. Eight human corneas were cryopreserved with the method showing optimum results in rabbit corneas and four additional corneas were used as controls. Endothelial viability was assessed after each step by vital staining and scanning electron microscopy. Best results after exposure of rabbit corneas to the freezing solution were achieved when using a 10% cryoprotectant concentration, with direct addition/dilution and exposure at room temperature (3512 ±300 viable cellsmm2 when using dimethylsulfoxide; 3403 ± 245 viable cellsmm2 when using 1,2-propanediol). Cryopreserved rabbit corneas had the highest endothelial cell survival when frozen at 1°C/min and thawed at 37°C (2003 ± 372 viable cells/mm2 when using dimethylsulfoxide and 1357 ± 667 viable cells/mm2 when using 1,2-propanediol). Cryopreserved human corneas had 753 ± 542 viable cells/mm2 when using dimethylsulfoxide and 56 ± 56 viable cells/mm2 when using 1,2-propanediol. We can conclude that the method developed is easy to handle and shows optimum results in rabbit corneas, with an endothelial cell survival that is consistent with transplant acceptability criteria. The results obtained in human corneas are below prediction and are still unsatisfactory for successful use in eye banking.  相似文献   

18.
Zhang YZ  Zhang SC  Liu XZ  Xu YJ  Hu JH  Xu YY  Li J  Chen SL 《Theriogenology》2005,63(3):763-773
With the purpose of finding an ideal cryoprotectant or combination of cryoprotectants in a suitable concentration for flounder (Paralichthys olivaceus) embryo cryopreservation, we tested the toxicities, at culture temperature (16 degrees C), of five most commonly used cryoprotectants-dimethyl sulfoxide (Me2SO), glycerol, methanol (MeOH), 1,2-propylene glycol (PG) and ethylene glycol (EG). In addition, cryoprotective efficiency to flounder embryos of individual and combined cryoprotectants were tested at -15 degrees C for 60 min. Five different concentrations of each of the five cryoprotectants and 20 different combinations of these cryoprotectants were tested for their protective efficiency. The results showed that the toxicity to flounder embryos of the five cryoprotectants are in the following sequence: PG < MeOH < Me2SO < glycerol < EG (P < 0.05); whereas the protective efficiency of each cryoprotectant, at -15 degrees C for a period of 60 min, are in the following sequence: PG > Me2SO approximately MeOH approximately glycerol > EG (greater symbols mean P < 0.05, and approximate symbols mean P > 0.05). Methanol combined with any one of the other cryoprotectants gave the best protection, while ethylene glycol combined with any one of the other cryoprotectants gave the poorest protection at -15 degrees C. Toxicity effect was concentration dependent with the lowest concentration being the least toxic for all five cryoprotectants at 16 degrees C. For PG, MeOH and glycerol, 20% solutions gave the best protection at -15 degrees C; whereas a 15% solution of Me2SO, and a 10% solution of EG, gave the best protection at -15 degrees C.  相似文献   

19.
An intact vasculature is essential for successful hypothermic perfusion and cryopreservation of solid organs, but few studies have specifically assessed the vascular effects of these procedures. A technique was therefore developed for continuous, direct observation of an isolated vascular bed during hypothermic perfusion with cryoprotectants, and during freezing and thawing. The isolated rat mesentery was spread across a controlled low temperature microscope stage and perfused with solutions containing fluorescein isothiocyanate (FITC)-Dextran 70 as an indicator of macromolecular permeability of the vessels. Hypertonic citrate washout, HP-5 perfusion (23), rapid and slow addition and removal of glycerol, and freezing/thawing were studied. Control perfusion with HP-5 produced slow FITC-Dextran leakage, reflecting normal physiological macromolecular permeability of vessels. Rapid addition of glycerol dramatically increased vascular permeability, consistent with osmotic damage to vessels. Rapid removal stopped flow through capillaries and decreased vascular dimensions, suggesting overhydration of endothelial cells and extravascular tissue. Venules and capillaries were the most susceptible vessels to osmotic stress. Slow addition and removal of glycerol (80 mmol/liter/min) produced results similar to control perfusions. During slow freezing (0.5 degree C/min to -5 degrees C) extravascular ice compressing vessels was more obvious than intravascular ice. Glycerol afforded some protection to the microvasculature during freeze/thaw cycles since flow was reestablished in venules and arterioles after thawing, although FITC-Dextran leakage indicated that damage had occurred.  相似文献   

20.
Propane-1,2-diol (propylene glycol, PG) permeates more rapidly than glycerol, has a strong glass-forming tendency, and appears to have a low toxicity. It is therefore attractive as a potential cryoprotectant for renal preservation. In this paper we compared the effect on subsequent function, of exposing rabbit renal cortical slices to 1 M PG or glycerol in a range of vehicle solutions and we demonstrated a remarkably low toxicity of PG at this concentration. Rabbit kidneys were then perfused with solutions containing PG up to a maximum concentration of 3 M, after which the cryoprotectant was removed and the function of cortical slices prepared from the perfused kidneys was assessed. Marked differences in perfusion characteristics were found between PG and glycerol and between different vehicle solutions for PG, but the two most suitable perfusates, both containing about 100 mM mannitol, permitted normal function in slices prepared after removal of PG. These results indicate that, with an appropriate vehicle perfusate, exposure to PG up to a concentration of 3 mol/liter has remarkably little effect upon vascular resistance and the renal cortical functions measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号