共查询到20条相似文献,搜索用时 0 毫秒
1.
A commercially available Clark-type electrode with a platinum cathode, commonly used for monitoring oxygen uptake, may also be used to monitor respiration with N2O. The disadvantages of this system include a high sensitivity to O2, which may be overcome by excluding O2, and sensitivity to acetylene. The advantage of the method is that it may be used to monitor directly the reduction of N2O by respiring cells. 相似文献
2.
G. U. Okereke 《World journal of microbiology & biotechnology》1993,9(1):59-62
The molar yields (g cell/mol) forAlcaligenes faecalis, Pseudomonas stutzeri, Paracoccus denitrificans andPseudomonas perfectomarinus batch cultures, under nitrous oxide (N2O) as the electron acceptor, were 11.2, 8.2, 6.1 and 4.4, respectively.Paracoccus denitrificans andPseudomonas perfectomarinus, which had the slowest growth rates, gave the lowest yields. Large maintenance energy costs may be partially responsible for this. The growth efficiencies ofA. faecalis andPs. perfectomarinus on N2O indicate that the numbers of sites for oxidative phosphorylation in the electron transport system associated with N2O reduction are about 49% and 39% of those in the electron transport system associated with O2 respiration, respectively. 相似文献
3.
Trimethylamine oxide (TMAO) stimulated both the anaerobic growth rate and the growth yield of Proteus NTHC 153. The molar growth yield from glucose and pyruvate in tryptone/yeast extract medium doubled in the presence of TMAO, and the organism grew anaerobically on the non-fermentable substrates L-lactate and formate when TMAO was added to the medium. We conclude that TMAO stimulated growth by serving as a terminal electron acceptor in an oxidative phosphorylation process. 相似文献
4.
Oliver Klimmek Achim Kröger Ralf Steudel Gabriele Holdt 《Archives of microbiology》1991,155(2):177-182
Polysulphide was formed according to reaction (1), when tetrathionate was (1) $${\text{S}}_4 {\text{O}}_6^{2 - } + {\text{HS}}^ - \to 2{\text{S}}_2 {\text{O}}_3^{2 - } + {\text{S(O)}} + {\text{H}}^ + $$ added to an anaerobic buffer (pH 8.5) containing excess sulphide. S(O) denotes the zero oxidation state sulphur in the polysulphide mixture S infn sup2- . The addition of formate to the polysulphide solution in the presence of Wolinella succinogenes caused the reduction of polysulphide according to reaction (2). The bacteria grew in a medium containing formate and sulphide, (2) $${\text{HCO}}_2^ - + {\text{S(O)}} + {\text{H}}2{\text{O}} \to {\text{HCO}}_3^ - + {\text{HS}}^ - + {\text{H}}^ + $$ when tetrathionate was continuously added. The cell density increased proportional to reaction (3) which represents the sum of reactions (1) and (3) $${\text{HCO}}_2^ - + {\text{S}}_{\text{4}} {\text{O}}_6^{2 - } + {\text{H}}2{\text{O}} \to {\text{HCO}}_3^ - + 2{\text{S}}_{\text{2}} {\text{O}}_3^{2 - } + 2{\text{H}}^ + $$ (2). The cell yield per mol formate was nearly the same as during growth on formate and elemental sulphur, while the velocity of growth was greater. The specific activities of polysulphide reduction by formate measured with bacteria grown with tetrathionate or with elemental sulphur were consistent with the growth parameters. The results suggest that W. succinogenes grow at the expense of formate oxidation by polysulphide and that polysulphide is an intermediate during growth on formate and elemental sulphur. 相似文献
5.
S R Hutchins 《Applied and environmental microbiology》1991,57(8):2403-2407
Microcosms were prepared from aquifer material, spiked with monoaromatic hydrocarbons, and amended with oxygen, nitrate, and nitrous oxide. Benzene and alkylbenzenes were degraded to concentrations below 5 micrograms/liter within 7 days under aerobic conditions, whereas only the alkylbenzenes were degraded when either nitrate or nitrous oxide was used. With limited oxygen, monoaromatic hydrocarbons were degraded but removal ceased once oxygen was consumed. However, when nitrate was also present, biodegradation of the alkylbenzenes continued with no apparent lag. Although benzene was still recalcitrant, levels were reduced compared with levels after treatment with nitrate or limited oxygen alone. 相似文献
6.
Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. 总被引:1,自引:4,他引:1
下载免费PDF全文

S R Hutchins 《Applied microbiology》1991,57(8):2403-2407
Microcosms were prepared from aquifer material, spiked with monoaromatic hydrocarbons, and amended with oxygen, nitrate, and nitrous oxide. Benzene and alkylbenzenes were degraded to concentrations below 5 micrograms/liter within 7 days under aerobic conditions, whereas only the alkylbenzenes were degraded when either nitrate or nitrous oxide was used. With limited oxygen, monoaromatic hydrocarbons were degraded but removal ceased once oxygen was consumed. However, when nitrate was also present, biodegradation of the alkylbenzenes continued with no apparent lag. Although benzene was still recalcitrant, levels were reduced compared with levels after treatment with nitrate or limited oxygen alone. 相似文献
7.
Geobacter sulfurreducens, previously classified as a strict anaerobe, tolerated exposure to atmospheric oxygen for at least 24 h and grew with oxygen as the sole electron acceptor at concentrations of 10% or less in the headspace. These results help explain how Geobacter species may survive in oxic subsurface environments, being poised to rapidly take advantage of the development of anoxic conditions. 相似文献
8.
A Kr?ger 《Biochimica et biophysica acta》1978,505(2):129-145
9.
Dissimilatory metal-reducing bacteria (DMRB) utilize numerous compounds as terminal electron acceptors, including insoluble iron oxides. The mechanism(s) of insoluble-mineral reduction by DMRB is not well understood. Here we report that extracellular melanin is produced by Shewanella algae BrY. The extracted melanin served as the sole terminal electron acceptor. Upon reduction the reduced, soluble melanin reduced insoluble hydrous ferric oxide in the absence of bacteria, thus demonstrating that melanin produced by S. algae BrY is a soluble Fe(III)-reducing compound. In the presence of bacteria, melanin acted as an electron conduit to Fe(III) minerals and increased Fe(III) mineral reduction rates. Growth of S. algae BrY occurred in anaerobic minimal medium supplemented with melanin extracted from previously grown aerobic cultures of S. algae BrY. Melanin produced by S. algae BrY imparts increased versatility to this organism as a soluble Fe(III) reductant, an electron conduit for iron mineral reduction, and a sole terminal electron acceptor that supports growth. 相似文献
10.
11.
12.
Margret Bronder Hildegard Mell Erhard Stupperich Achim Kröger 《Archives of microbiology》1982,131(3):216-223
- With fumarate as the terminal electron acceptor and either H2 or formate as donor, Vibrio succinogenes could grow anaerobically in a mineral medium using fumarate as the sole carbon source. Both the growth rate and the cell yield were increased when glutamate was also present in the medium.
- Glutamate was incorporated only into the amino acids of the glutamate family (glutamate, glutamine, proline and arginine) of the protein. The residual cell constituents were synthesized from fumarate.
- Pyruvate and phosphoenolpyruvate, as the central intermediates of most of the cell constituents, were formed through the action of malic enzyme and phosphoenolpyruvate synthetase. Fructose-1,6-bisphosphate aldolase was present in the bacterium suggesting that this enzyme is involved in carbohydrate synthesis.
- In the absence of added glutamate the amino acids of the glutamate family were synthesized from fumarate via citrate. The enzymes involved in glutamate synthesis were present.
- During growth in the presence of glutamate, net reducing equivalents were needed for cell synthesis. Glutamate and not H2 or formate was used as the source of these reducing equivalents. For this purpose part of the glutamate was oxidized to yield succinate and CO2.
- The α-ketoglutarate dehydrogenase involved in this reaction was found to use ferredoxin as the electron acceptor. The ferredoxin of the bacterium was reoxidized by means of a NADP-ferredoxin oxidoreductase. Enzymes catalyzing the reduction of NAD, NADP or ferredoxin by H2 or formate were not detected in the bacterium.
13.
Summary (Ring-U)-14C-benzoate was not utilized by various denitrifying bacteria (pure cultures of Pseudomonas aeruginosa, Acinetobacter sp. and Moraxella sp. or a mixed population) in the presence of nitrate as the only electron acceptor (completely anaerobic conditions). In the presence of only traces of molecular oxygen (introduced by porous tubing), denitrification did occur under inappropriate experimental conditions. This indicates that an apparent anaerobic fission of the benzene nucleus may occur. 相似文献
14.
15.
Simone Dell’Acqua Isabel Moura José J. G. Moura Sofia R. Pauleta 《Journal of biological inorganic chemistry》2011,16(8):1241-1254
Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N2OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N2OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N2OR, or an electrostatic nature, in the case of P. denitrificans N2OR and A. cycloclastes N2OR. A set of well-conserved residues on the N2OR surface were identified as being part of the electron transfer pathway from the redox partner to N2OR (Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N2OR sequence). Moreover, we built a model for Wolinella succinogenes N2OR, an enzyme that has an additional c-type-heme-containing domain. The structures of the N2OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two domains. The orientation of the c-type-heme-containing domain relative to the N2OR domain is similar to that found in the other electron transfer complexes. 相似文献
16.
Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen 总被引:4,自引:0,他引:4
Lars Peter Nielsen Peter Bondo Christensen Niels Peter Revsbech Jan Sørensen 《Microbial ecology》1990,19(1):63-72
Depth distributions of O2 respiration and denitrification activity were studied in 1- to 2-mm thick biofilms from nutrient-rich Danish streams. Acetylene was added to block the reduction of N2O, and micro-profiles of O2 and N2O in the biofilm were measured simultaneously with a polarographic microsensor. The specific activities of the two respiratory processes were calculated from the microprofiles using a one-dimensional diffusion-reaction model. Denitrification only occurred in layers where O2 was absent or present at low concentrations (of a fewM). Introduction of O2 into deeper layers inhibited denitrification, but the process started immediately after anoxic conditions were reestablished. Denitrification activity was present at greater depth in the biofilm when the NO3
– concentration in the overlying water was elevated, and the deepest occurrence of denitrification was apparently determined by the depth penetration of NO3
–. The denitrification rate within each specific layer was not affected by an increase in NO3
– concentration, and the half-saturation concentration (Km) for NO3
– therefore considered to be low (<25M). Addition of 0.2% yeast extract stimulated denitrification only in the uppermost 0.2 mm of the denitrification zone indicating a very efficient utilization of the dissolved organic matter within the upper layers of the biofilm. 相似文献
17.
J. Espinosa-de-los-Monteros A. Martinez F. Valle 《Applied microbiology and biotechnology》2001,57(3):379-384
Cultures using nitrate as the terminal electron acceptor were conducted in Schaeffer's medium to evaluate the growth performance and metabolic profiles of Bacillus subtilis, and its potential to express the aprE (subtilisin) gene under anoxic conditions. Nitrate was converted to ammonia through nitrite reduction; and different product profiles were observed during the growth phase when nitrate was added at various concentrations (4-24 mM) to Schaeffer's medium containing glucose (4 g l(-1)). If nitrate was not limiting, then acetic acid and acetoin were accumulated, suggesting a limitation of reduced cofactors but, if nitrate became limiting, then lactic acid and butanediol were accumulated, suggesting an excess of reduced cofactors. Due to a strong lysis at the onset of the end of the growth phase, sporulation frequency and aprE expression were negligible in anaerobic batch cultures. Fed-batch fermentation allowed the development of a stationary phase through a continuous supply of glucose and nitrate. In this case, sporulation frequency was almost null, but interestingly aprE expression was similar to that found in aerobic cultures. 相似文献
18.
Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants. 总被引:12,自引:0,他引:12
J R Guest 《Journal of general microbiology》1979,115(2):259-271
Fifteen independent menaquinone biosynthesis mutants (men) of Escherichia coli K12, selected for their inability to use fumarate as terminal electron acceptor, were investigated. Two nutritionally distinct groups were detected. The major group (13 mutants) responded to 1,4-dihydroxy-2-naphthoate (DHN), 2-succinylbenzoate (SB) and its dilactone, whereas the minor group (2 mutants) only responded to DHN. DHN was at least five times more effective than SB but it inhibited growth at concentrations greater than 10 microM. For anaerobic growth on glucose minimal medium the auxotrophs responded to much lower concentrations of DHN and SB and these intermediates could be replaced by uracil. Anaerobic growth tests showed that glycerol, formate and H2 are good substrates for E. coli when fumarate is the ultimate electron acceptor but growth with lactate or with fumarate alone is poor. All 15 men mutations were located between glpT and purF at approximately 49 min in the E. coli linkage map. Cotransduction frequencies with relevant markers were: nalA (21%), glpT (35%) and purF (15%). The presence of at least three genetically distinct classes (menC and menD, SB-requirers; menB, DHN-requirers) was indicated using abortive transduction as a complementation test and three-factor genetic analysis. The relative orientation nalA...menC-(D,B)...purF was indicated. Fluoroacetate-resistant mutants were isolated and four different classes were identified: ack, lacking acetate kinase; pta, lacking phosphotransacetylase; facA, lacking both of these activities; and facB, which retained both of these enzyme activities. Some of the pta mutants and all of the facA mutants failed to grow on media containing fumarate as terminal electron acceptor or anaerobically on glucose minimal medium. All four types had genetic lesions clustered between the men and purF sites. Average cotransduction frequencies with relevant markers were: nalA (4%), men (27 to 35%) and purF (71 to 80%). 相似文献
19.
20.
Ding YH Hixson KK Aklujkar MA Lipton MS Smith RD Lovley DR Mester T 《Biochimica et biophysica acta》2008,1784(12):1935-1941
The mechanisms for Fe(III) oxide reduction in Geobacter species are of interest because Fe(III) oxides are the most abundant form of Fe(III) in many soils and sediments and Geobacter species are prevalent Fe(III)-reducing microorganisms in many of these environments. Protein abundance in G. sulfurreducens grown on poorly crystalline Fe(III) oxide or on soluble Fe(III) citrate was compared with a global accurate mass and time tag proteomic approach in order to identify proteins that might be specifically associated with Fe(III) oxide reduction. A total of 2991 proteins were detected in G. sulfurreducens grown with acetate as the electron donor and either Fe(III) oxide or soluble Fe(III) citrate as the electron acceptor, resulting in 86% recovery of the genes predicted to encode proteins. Of the total expressed proteins 76% were less abundant in Fe(III) oxide cultures than in Fe(III) citrate cultures, which is consistent with the overall slower rate of metabolism during growth with an insoluble electron acceptor. A total of 269 proteins were more abundant in Fe(III) oxide-grown cells than in cells grown on Fe(III) citrate. Most of these proteins were in the energy metabolism category: primarily electron transport proteins, including 13 c-type cytochromes and PilA, the structural protein for electrically conductive pili. Several of the cytochromes that were more abundant in Fe(III) oxide-grown cells were previously shown with genetic approaches to be essential for optimal Fe(III) oxide reduction. Other proteins that were more abundant during growth on Fe(III) oxide included transport and binding proteins, proteins involved in regulation and signal transduction, cell envelope proteins, and enzymes for amino acid and protein biosynthesis, among others. There were also a substantial number of proteins of unknown function that were more abundant during growth on Fe(III) oxide. These results indicate that electron transport to Fe(III) oxide requires additional and/or different proteins than electron transfer to soluble, chelated Fe(III) and suggest proteins whose functions should be further investigated in order to better understand the mechanisms of electron transfer to Fe(III) oxide in G. sulfurreducens. 相似文献