首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel vancomycin silica hydride stationary phase was synthesized and the particles of 1.8 µm were packed into fused silica capillaries of 75 µm internal diameter (I.D.). The chiral stationary phase (CSP) was tested for the separation of some derivatized amino acid enantiomers by using nano‐liquid chromatography (nano‐LC). Some experimental parameters such as the type and the content of organic modifier, the pH, and the concentration of the buffer added to the mobile phase were modified and the effect on enantioselectivity, retention time, and enantioresolution factor was studied. The separation of selected dansyl amino acids (Dns‐AAs), e.g., Asp, Glu, Leu, and Phe in their enantiomers was initially achieved utilizing a mobile phase containing 85% (v/v) methanol (MeOH) and formate buffer measuring the enantioresolution factor and enantioselectivity in the range 1.74–4.17 and 1.39–1.59, respectively. Better results were obtained employing a more polar organic solvent as acetonitrile (ACN) in the mobile phase. Optimum results (Rs 1.41–6.09 and α 1.28–2.36) were obtained using a mobile phase containing formate buffer pH 2.5/water/MeOH/ACN 6:19:12.5:62.5 (v/v/v/v) in isocratic elution mode at flow rate of 130 nL/min. Chirality 27:767–772, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Cemil Aydoğan 《Chirality》2018,30(10):1144-1149
A novel chiral porous‐layer stationary phase was developed for use in open‐tubular nano liquid chromatography. The stationary phase was prepared by an in‐situ polymerization of 3‐chloro‐2‐hydroxypropylmethacrylate (HPMA‐Cl) and ethylene dimethacrylate (EDMA). The reactive chloro groups at the surface of the porous stationary phase were reacted with β‐Cyclodextrin (β‐CD). The resulting morphology was characterized by using scanning electron microscopy (SEM) and Fourier‐transform infrared spectroscopy (FT‐IR). The chromatographic performance of the column was evaluated by hydrophilic interaction chromatography (HILIC). Amino acids were used as test solutes. The running buffer conditions for the enantioseparation were found to be 85% acetonitrile (ACN):10%MeOH: 5% H2O at 0.1% v/v trifluoro acetic acid (TFA) (flow rate: 800 nL/min). The enantioseparation provided high theoretical plate numbers up to 26 000 platesm?1. A good retention capacity within satisfactory retention times was also achieved. Real sample applicability of this column to the separation of amino acid enantiomers in fruit juice sample was demonstrated.  相似文献   

3.
Bhushan R  Kumar V  Tanwar S 《Amino acids》2009,36(3):571-579
Some non-protein α-amino acids were derivatized with 1-fluoro-2,4-dinitrophenyl-5-l-alaninamide (Marfey’s reagent, MR, FDNP-l-Ala-NH2,) and four of its structural variants FDNP-l-Phe-NH2, FDNP-l-Val-NH2, FDNP-l-Leu-NH2 and FDNP-l-Pro-NH2. The resultant diastereomers were separated by normal and reversed phase thin layer chromatography (TLC) and reversed phase HPLC. In normal phase TLC, best resolution was obtained with solvent combination of phenol-water (3:1) while in reversed phase TLC mixtures of acetonitrile with triethylammonium phosphate buffer were found successful for resolution of diastereomers. The separation behavior of diastereomers prepared with different reagents was compared. The diastereomers of most of the amino acids prepared with FDNP-l-Leu-NH2 were best separated while those prepared with FDNP-l-Pro-NH2 failed to separate in most of the cases. The diastereomers were also separated on a reversed phase C8 column with gradient elution using mixture of aqueous-trifluoroacetic acid (TFA) and acetonitrile and with detection at 340 nm. The effects of TFA concentration, flow rate and run time on HPLC separation were studied.  相似文献   

4.
The separation of all common dimethylaminoazobenzenethiohydantoin (DABTH) amino acids derived from modified Edman sequencing can be achieved by using high-performance liquid chromatography. All derivatives, including DABTH-Ile and DABTH-Leu, can be readily separated in a solvent mixture of sodium acetate buffer and 1% ethylene dichloride in acetonitrile. The high absorbance of the DABTH amino acids at 436 nm makes possible the quantitative determination of these derivatives at picomole concentrations in a relatively short time (30–40 min).  相似文献   

5.
Summary. A method based on near-infrared spectroscopy (NIRS) was developed for the rapid and non-destructive determination and quantification of solid and dissolved amino acids. The statistical results obtained after optimisation of measurement conditions were evaluated on the basis of statistical parameters, Q-value (quality of calibrations), R2, standard error of estimation (SEE), standard error of prediction (SEP), BIAS applying cluster and different multivariate analytical procedures. Experimental optimisation comprised the selection of the highest suitable optical thin-layer (0.5, 1.0, 1.5, 2.0, 2.5, 3.0 mm), sample temperature (10–30 °C), measurement option (light fibre, 0.5 mm optical thin-layer; boiling point tube; different types of cuvettes) and sample concentration in the range between 100 and 500 ppm. Applying the optimised conditions and a 115-QS Suprasil? cuvette (V = 400 μl), the established qualitative model enabled to distinguish between different dissolved amino acids with a Q-value of 0.9555. Solid amino acids were investigated in the transflectance mode, allowing to differentiate them with a Q-value of 0.9155. For the qualitative and quantitative analysis of amino acids in complex matrices NIRS was established as a detection system directly onto the plate after prior separation on cellulose based thin-layer chromatography (TLC) sheets employing n-butanol, acetic acid and distilled water at a ratio of 8:4:2 (v/v/v) as an optimised mobile phase. Due to the prior separation step, the established calibration curve was found to be more stable than the one calculated from the dissolved amino acids. The found lower limit of detection was 0.01 mg/ml. Finally, this optimised TLC-NIRS method was successfully applied for the qualitative and quantitative analysis of L-lysine in apple juice. NIRS is shown not only to offer a fast, non-destructive detection tool but also to provide an easy-to-use alternative to more complicated detection methods such as mass spectrometry (MS) for qualitative and quantitative TLC analysis of amino acids in crude samples.  相似文献   

6.
This article describes the enantioselective analysis of cyclophosphamide (CPA) in human plasma using LC-MS/MS. CPA enantiomers were extracted from plasma using a mixture of ethyl acetate and chloroform (75:25, v/v). The enantiomers were separated on a Chiralcel(R) OD-R column, with the mobile phase consisting of a mixture of acetonitrile and water (75:25, v/v) plus 0.2% formic acid. The protonated ions and their respective product ions were monitored using two functions, 261 > 141 for CPA enantiomers and 189 > 104 for the internal standard (antipyrine). Recovery rates were higher than 95% and the quantification limit was 2.5-ng/ml plasma for both enantiomers. The coefficients of variation and the relative errors obtained for the validation of intra- and interassay precision and accuracy were less than 10%. The method was applied for the investigation of the enantioselective pharmacokinetics of CPA in a lupus nephritis patient treated with 1 g CPA infused over 2 h and in a breast cancer patient treated with 0.9 g infused over 1 h. No stereoselectivity in the pharmacokinetic parameters was observed for either patient. Clearance values of 2.63 and 2.93 l/h and of 3.36 and 3.61 l/h for (-)-(S) and (+)-(R)-CPA were obtained for the breast cancer and lupus nephritis patient, respectively.  相似文献   

7.
D-Amino acids in food and biological samples labeled with R(-)- and S(+)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazoles (DBD-PyNCS) were separated by reversed-phase chromatography and detected fluorometrically at 550 nm (excitation at 460 nm). DL-Amino acids were efficiently labeled at 55 degrees C for 20 min in basic medium. The resulting thiocarbamoyl-amino acids were resolved by an isocratic elution using water:30% methanol in acetonitrile (72:28) containing 0.1% trifluoracetic acid as mobile phase for hydrophilic amino acids and gradient elutions using sodium acetate buffer (pH 5. 2)/acetonitrile as gradient solvent mixture for hydrophobic amino acids, respectively. The detection limits (S/N = 3) of DL-amino acids tested were in the range of 0.16-0.75 pmol. The proposed method was applied to determine the D-amino acid(s) in milk, cream, fermented dairy products (yogurt and yakult), tomato products (juice, puree, and catchup), fermented beverages (beer and red wine), and human urine. The existence of D-amino acid(s) was demonstrated in all the samples tested. Furthermore, the identification of the D-amino acid(s) was performed using both isomers of DBD-PyNCS and by on-line HPLC-electrospray ionization-MS.  相似文献   

8.
A capillary electrophoretic (CE) method for the enantioseparation of N‐protected chiral amino acids was developed using quinine and tert‐butyl carbamoylated quinine as chiral selectors added to nonaqueous electrolyte solutions (NACE). A series of various N‐derivatized amino acids were tested as chiral selectands, and in order to optimize the CE enantioseparation of these compounds, different parameters were investigated: the nature of the organic solvent, the combination of different solvents, the nature and the concentration of the background electrolyte, the selector concentration, the capillary temperature, and the applied voltage. The influence of these factors on the separation of the analyte enantiomers and the electroosmotic flow was studied. Generally, with tert‐butyl carbamoylated quinine as chiral selector, better enantioseparations were achieved than with unmodified quinine. Optimum experimental conditions were found with a buffer made of 12.5 mM ammonia, 100 mM octanoic acid, and 10 mM tert‐butyl carbamoylated quinine in an ethanol–methanol mixture (60:40 v/v). Under these conditions, DNB‐Leu enantiomers could be separated with a selectivity factor (α) of 1.572 and a resolution (Rs) of 64.3; a plate number (N) of 127,000 and an asymmetry factor (As) of 0.93 were obtained for the first migrating enantiomer. Chirality 11:622–630, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Malathion is a widely used chiral phosphorus insecticide, which has a more toxic chiral metabolite malaoxon. In this work, the enantiomers of malathion and malaoxon were separated by high-performance liquid chromatography-mass/mass (HPLC-MS/MS) with chiral columns using acetonitrile/water or methanol/water as mobile phase, and the chromatographic conditions were optimized. Based on the chiral separation, the chiral residue analysis methods for the enantiomers in soil, fruit, and vegetables were set up. Two pairs of the enantiomers were better separated on CHIRALPAK IC chiral column, and baseline simultaneous separations of malathion and malaoxon enantiomers were achieved with acetonitrile/water (40/60, v/v) as mobile phase at a flow rate of 0.5 mL/min. The elution orders were −/+ for both malathion and malaoxon measured by an optical rotation detector. The chiral residue analysis in soil, fruit, and vegetables was validated by linearity, recovery, precision, limit of detection (LOD), and limit of quantification (LOQ). The LODs and LOQs for the enantiomers of malathion were 1 μg/kg and 3–5 μg/kg and 0.08 μg/kg and 0.20–0.25 μg/kg for malaoxon enantiomers. Good linear calibration curves for each enantiomer in the matrices were obtained within the concentration range of 0.02–12 mg/L. The mean recoveries of the enantiomers of malathion and malaoxon ranged from 82.26% to 109.04%, with RSDs of 0.71–8.63%.The results confirmed that this method was capable of simultaneously determining the residue of malathion and malaoxon in food and environmental matrix on an enantiomeric level.  相似文献   

10.
In the quantitation of amino acids by precolumn derivatization with phenylisothiocyanate, the yields of N'-phenylthiocarbamyl (PTC)-aspartate and PTC-glutamate from protein hydrolysates are often suboptimal, particularly in analyses following rapid hydrolysis at 160 degrees C. In this paper we show that these losses are due to the presence of materials extracted from the glass container during hydrolysis. In the presence of these extracts, the repeated drying and neutralization steps which precede phenylthiocarbamylation result in samples not fully solubilized by the presently used derivatizing mixtures. Thus the coupling yields for the acidic residues are highly variable. A coupling buffer with the composition 35% H2O, 30% acetonitrile, 25% pyridine, and 10% triethylamine (v/v/v/v) is an efficient solvent for all amino acids in hydrolysates and permits consistent, quantitative derivatization of all amino acids, including aspartate and glutamate.  相似文献   

11.
A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/−)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids -alanine, -glutamine, and -aspartic acid have been observed in cerebrospinal fluid, and -alanine and -glutamic acid in urine. To the best of our knowledge no measurements of either -alanine in cerebrospinal fluid or -glutamic acid in urine have been presented in the literature before.  相似文献   

12.
A reversed-phase high-performance liquid chromatographic method for the determination of the enantiomers of atenolol in rat hepatic microsome has been developed. Racemic atenolol was extracted from alkalinized rat hepatic microsome by ethyl acetate. The organic layer was dried with anhydrous sodium sulfate and evaporated using a gentle stream of air. Atenolol racemic compound was derivatized with 2,3,4,6-tetra-O-acetyl-β- -glycopyranosyl isothiocyanate at 35°C for 30 min to form diastereomers. After removal of excess solvent, the diastereomers were dissolved in phosphate buffer (pH 4.6)–acetonitrile (50:30). The diastereomers were separated on a Shimadzu CLC-C18 column (10 μm particle size, 10 cm×0.46 cm I.D.) with a mobile phase of phosphate buffer–methanol–acetonitrile (50:20:30, v/v) at a flow-rate of 0.5 ml/min. A UV–VIS detector was operated at 254 nm. For each enantiomer, the limit of detection was 0.055 μg/ml (signal-to-noise ratio 3) and the limit of quantification (signal-to-noise ratio 10) was 0.145 μg/ml (RSD <10%). In the range 0.145–20 μg/ml, intra-day coefficients of variation were 1.0–7.0% and inter-day coefficients of variation were 0.4–16.5% for each enantiomer. The assay was applied to determine the concentrations of atenolol enantiomers in rat hepatic microsome as a function of time after incubation of racemic atenolol.  相似文献   

13.
A solvent mixture containing dioxane, acetonitrile, and hexane was found to be suitable as a mobile phase to resolve oxazepam enantiomers by chiral stationary phase high performance liquid chromatography using covalent Pirkle columns. The resolved oxazepam enantiomers in this solvent mixture had a racemization half-life greater than 3 days at 23°C. When desiccated at 0°C as dried residue, OX enantiomers were stable for at least 50 days with less than 2% racemization. The conditions which stabilized OX enantiomers significantly facilitated the determination of racemization half-lives of OX enantiomers in a variety of aqueous and nonaqueous solvents and at different temperatures. © 1992 Wiley-Liss, Inc.  相似文献   

14.
M Enquist  J Hermansson 《Chirality》1989,1(3):209-215
A method for the determination of (R)- and (S)-atenolol in human plasma and urine is described. The enantiomers of atenolol are extracted into dichloromethane containing 3% heptafluorobutanol followed by acetylation with acetic anhydride at 60 degrees C for 2 h. The acetylated enantiomers were separated on a chiral alpha 1-AGP column. Quantitation was performed using fluorescence detection. A phosphate buffer pH 7.1 (0.01 M phosphate) containing 0.25% (v/v) acetonitrile was used as mobile phase. The described procedure allows the detection of less than 6 ng of each enantiomer in 1 ml plasma. The relative standard deviation is 4.4% at 30 ng/ml of each enantiomer in plasma. The plasma concentration of (R)- and (S)-atenolol did not differ significantly in two subjects who received a single tablet of racemic atenolol. The R/S ratio of atenolol in urine was approximately 1.  相似文献   

15.
建立2,4-二硝基氟苯柱前衍生化-反相高效液相色谱法测定绞股蓝茶叶中17种游离氨基酸的含量。以Phenomenex Gemini NX C18(4.6mm×250mm,5μm)为分析柱,采用梯度洗脱,流动相A为0.05mol·L-1乙酸钠(pH=6.4,含0.1%N,N-二甲基甲酰胺),流动相B为乙腈-水(1∶1,v/v),检测波长为360nm,柱温35℃;经方法学考察,该方法具有良好的稳定性和重现性。测定结果表明,绞股蓝茶叶中17种游离氨基酸总量为39.79mg·g-1,其中人体必需氨基酸占游离氨基酸总量的36.57%。从氨基酸含量考虑,绞股蓝茶叶具备一定的开发利用价值。  相似文献   

16.
L L Lee  A G Zacchei 《Chirality》1991,3(2):129-135
A stereospecific HPLC bioanalytical method was developed for quantitation of the enantiomers of MK-0571, a leukotriene D4 receptor antagonist. The procedure involves the addition of an internal standard analog to the biological matrix followed by extraction of the free acids into ethyl acetate. The acids are subsequently reacted with the homochiral reagent, (+)-(R)-alpha-(1-naphthyl)ethylamine (NEA) to form diastereomers. Following removal of excess reagent and side products by a dilute acid wash, the NEA-MK-0571 diastereomers are separated on a phenyl urea chiral column using a mobile phase containing hexane, isopropanol, and acetonitrile and are detected with a fluorescence detector. The sensitivity of the method is such that 50 ng of each enantiomer can be quantitated. In the 0.05 to 10 micrograms range the recoveries of the enantiomers of MK-0571 from plasma were 100.4 +/- 7.9% and 100.0 +/- 7.2%. NMR and mass spectral data confirmed the structure of the derivative. The method has been utilized in drug safety evaluation studies to demonstrate enantioselectivity in disposition of the enantiomers of MK-0571 in rats and monkeys but not in mice.  相似文献   

17.
The modification of the lysine moieties of proteins to Nepsilon-carboxymethyllysine (CML) is supposed to play a major role in the development of long-term complications in patients with diabetes mellitus. This paper presents an analytical method for the quantitative determination of CML in plasma proteins, which could be used for studying the development of diabetic complications. The method is based on isolating proteins from plasma by precipitation with trichloroacetic acid and hydrolysing these under acidic conditions (6M hydrochloric acid at 110 degrees C for 20 h) to the individual amino acids. After hydrolysis, CML is derivatised along with the other amino acids to 9-fluorenylmethoxycarbonyl (FMOC) derivatives, which are subsequently separated by reversed-phase column liquid chromatography using a 150 mm x 4.6 mm C8 column and a mobile phase of 25 mM potassium phosphate buffer (pH 2.0) and acetonitrile (80:20 (v/v)) and detected using fluorescence detection (excitation at 260 nm and emission at 310 nm). Quantification of the protein-bound CML content of a plasma sample is achieved using standard addition. The impact of several aspects of the sample preparation and chromatography on method performance is discussed. Method evaluation results are reported and show that this method is capable of determining CML with good accuracy and precision (below 10%) in the relevant concentration range (1-10 microg/ml), with a limit of detection of 0.2 microg/ml.  相似文献   

18.
Kim JS  Lee YS 《Amino acids》2009,36(3):465-474
This study investigated the enolization and racemization reactions of glucose and fructose on heating with amino acid enantiomers and the formation of melanoidins as a result of the Maillard reaction. The study measured reducing sugars and L- and D- amino acids using HPLC as an index for the amount of enolization of the sugars and isomerization of the amino acids. Additionally, the absorption of melanoidins was measured at different wavelengths (420, 450, 470, 490 nm); the UV–Vis spectra and the extinction coefficient were determined for the formation of melanoidins. Melanoidins were, rather arbitrarily, defined by a high-molecular-weight (HMW) if it was above a lower limit of 12.4 kDa, which was the nominal cut-off value in the dialysis system used. A remarkable enolization reaction of the sugars was observed in the course of the Maillard reaction. Especially, in the Fru/D-Asn model system, the degree of sugar enolization was more than in the other model systems. All of the FDAA (1-fluoro-2, 4-dinitrophenyl-5-L-alanine amide) amino acids were separated by TLC. The racemization of the amino acids was higher in the fructose-amino acids systems. Isomer formation was the highest in the Fru/D-Asn system. The L- and D- isomers showed different absorptions in the UV–Vis spectra, although these had similar shapes. The absorption of the melanoidins formed from glucose was higher than that formed from fructose. In particular, the sugar–asparagine system showed different characteristics according to the L- and D-isomers. The differences in the extinction coefficients of the melanoidins was significant (P < 0.05), except for the sugar–lysine system.  相似文献   

19.
The major adreno-ovarian steroid hormones (progesterone, estrone, 17α-estradiol, 17β-estradiol, estriol, corticosterone, cortisone, and cortisol) have been separated simultaneously on a single TLC plate without recourse to transfer chromatography. The plate was developed successively twice in benzene/ethanol (95:5, v/v) solvent system. It was then sprayed with rhodamine 6G and a line was drawn isolating the already separated least polar and medium-polar steroids (progesterone, estrone, 17α-estradiol, and 17β-estradiol) with the help of ultraviolet light. Then 5 ml methanol per 100 ml solvent in the tank was added and the plate again developed 2–3 times up to the line drawn, when polar steroids (corticosterone, cortisone, cortisol, and estriol) separated out.  相似文献   

20.
A method for the simultaneous determination of bile acids in rat liver tissue by high-performance liquid chromatography was developed. Without prior fractionation and alkaline hydrolysis, 30 unconjugated, glycine- and taurine-conjugated bile acids were detected by post-column enzymatic reaction and fluorescence detection. They were separated on a reversed-phase column using a linear gradient solvent system of 10 mM tribasic ammonium phosphate–acetonitrile–methanol (44:12:5, v/v/v) and 20 mM dibasic ammonium phosphate–acetonitrile–methanol (2:1:2, v/v/v). The limits of detection were 1–5 pmol, and calibration curves were linear for concentrations ranging between 10 and 4000 pmol per 10 μl injection. This rapid and reliable method is effective for measuring bile acid levels in liver tissue not only of rats but also of patients with hepatobiliary and other diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号