首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene hetN encodes a putative oxidoreductase that is known to suppress heterocyst differentiation when present on a multicopy plasmid in Anabaena sp. PCC 7120. To mimic the hetN null phenotype and to examine where HetN acts in the regulatory cascade that controls heterocyst differentiation, we replaced the native chromosomal hetN promoter with the copper-inducible petE promoter. In the presence of copper, heterocyst formation was suppressed in undifferentiated filaments. When hetN expression was turned off by transferring cells to media lacking copper, the filaments initially displayed the wild-type pattern of single heterocysts but, 48 h after the induction of heterocyst formation, a pattern of multiple contiguous heterocysts predominated. Suppression of heterocyst formation by HetN appears to occur both upstream and downstream of the positive regulator HetR: overexpression of hetN in undifferentiated filaments prevents the wild-type pattern of hetR expression as well as the multiheterocyst phenotype normally observed when hetR is expressed from an inducible promoter. Green fluorescent protein fusions show that the expression of hetN in wild-type filaments normally occurs primarily in heterocysts. We propose that HetN is normally involved in the maintenance of heterocyst spacing after the initial heterocyst pattern has been established, but ectopic expression of hetN can also block the initial establishment of the pattern.  相似文献   

2.
The hetN gene plays an important role in heterocyst differentiation and pattern formation. An immunoblotting study showed that the hetN gene in Anabaena sp. PCC 7120 was expressed in vegetative cells grown with combined nitrogen. After a switch to a medium without combined nitrogen, hetN expression first declined and was then followed by a rapid increase in its product, HetN, which was only present in mature heterocysts. HetN is located on both thylakoid membranes and plasma membranes as determined by immunoblotting using purified membranes. Overexpression of hetN completely prevented hetR up-regulation under nitrogen-deprivation conditions, suggesting that its role in pattern control may depend on its inhibition of hetR expression.  相似文献   

3.
4.
5.
In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide.  相似文献   

6.
The patB gene product is required for growth and survival of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 in the absence of combined nitrogen. A patB::gfp fusion demonstrated that this gene is expressed exclusively in heterocysts. patB mutants have a normal initial pattern of heterocyst spacing along the filament but differentiate excess heterocysts after several days in the absence of combined nitrogen. Expression of hetR and patS, two critical regulators of the heterocyst development cascade, are normal for patB mutants, indicating that patB acts downstream of them in the differentiation pathway. A patB deletion mutant suffers an almost complete cessation of growth and nitrogen fixation within 24 h of combined nitrogen removal. In contrast, a new PatB mutant that is defective in its N-terminal ferredoxin domain, or a previously described mutant that has a frameshift removing its C-terminal helix-turn-helix domain, grows very slowly and differentiates multiple contiguous heterocysts under nitrogen-deficient conditions.  相似文献   

7.
8.
Wu X  Liu D  Lee MH  Golden JW 《Journal of bacteriology》2004,186(19):6422-6429
The patS gene encodes a small peptide that is required for normal heterocyst pattern formation in the cyanobacterium Anabaena sp. strain PCC 7120. PatS is proposed to control the heterocyst pattern by lateral inhibition. patS minigenes were constructed and expressed by different developmentally regulated promoters to gain further insight into PatS signaling. patS minigenes patS4 to patS8 encode PatS C-terminal 4 (GSGR) to 8 (CDERGSGR) oligopeptides. When expressed by P(petE), P(patS), or P(rbcL) promoters, patS5 to patS8 inhibited heterocyst formation but patS4 did not. In contrast to the full-length patS gene, P(hepA)-patS5 failed to restore a wild-type pattern in a patS null mutant, indicating that PatS-5 cannot function in cell-to-cell signaling if it is expressed in proheterocysts. To establish the location of the PatS receptor, PatS-5 was confined within the cytoplasm as a gfp-patS5 fusion. The green fluorescent protein GFP-PatS-5 fusion protein inhibited heterocyst formation. Similarly, full-length PatS with a C-terminal hexahistidine tag inhibited heterocyst formation. These data indicate that the PatS receptor is located in the cytoplasm, which is consistent with recently published data indicating that HetR is a PatS target. We speculated that overexpression of other Anabaena strain PCC 7120 RGSGR-encoding genes might show heterocyst inhibition activity. In addition to patS and hetN, open reading frame (ORF) all3290 and an unannotated ORF, orf77, encode an RGSGR motif. Overexpression of all3290 and orf77 under the control of the petE promoter inhibited heterocyst formation, indicating that the RGSGR motif can inhibit heterocyst development in a variety of contexts.  相似文献   

9.
The novel asr1734 gene of Anabaena (Nostoc) sp. strain PCC 7120 inhibited heterocyst development when present in extra copies. Overexpression of asr1734 inhibited heterocyst development in several strains including the wild type and two strains that form multiple contiguous heterocysts (Mch phenotype): a PatS null mutant and a hetR(R223W) mutant. Overexpression of asr1734 also caused increased nblA messenger RNA levels, and increased loss of autofluorescence in vegetative cells throughout filaments after nitrogen or sulphur depletion. Unlike the wild type, an asr1734 knockout mutant formed 5% heterocysts after a nitrogen shift from ammonium to nitrate, and formed 15% heterocysts and a weak Mch phenotype after step-down to medium lacking combined nitrogen. After nitrogen step-down, the asr1734 mutant had elevated levels of ntcA messenger RNA. A green fluorescent protein reporter driven by the asr1734 promoter, P(asr1734)-gfp, was expressed specifically in differentiating proheterocysts and heterocysts after nitrogen step-down. Strains overexpressing asr1734 and containing P(hetR)-gfp or P(patS)-gfp reporters failed to show normal patterned upregulation 24 h after nitrogen step-down even though hetR expression was upregulated at 6 h. Apparent orthologues of asr1734 are found only in two other filamentous nitrogen-fixing cyanobacteria, Anabaena variabilis and Nostoc punctiforme.  相似文献   

10.
Summary In the filamentous cyanobacterium Anabaena sp. PCC 7120 patS and hetN suppress the differentiation of vegetative cells into nitrogen-fixing heterocysts to establish and maintain a pattern of single heterocysts separated by approximately 10 undifferentiated vegetative cells. Here we show that the patS- and hetN-dependent suppression pathways are the only major factors that prevent vegetative cells from differentiating into heterocysts when a source of ammonia is not present. The patS and hetN pathways are independent of each other, and inactivation of both patS and hetN leads to differentiation of almost all cells of a filament in the absence of a source of fixed nitrogen, compared with approximately 9% in the wild type. Complete differentiation of filaments also occurs when nitrate is supplied as a source of fixed nitrogen, conditions that do not induce differentiation of wild-type filaments. However, ammonia is still capable of suppressing differentiation. The percentage of cells that differentiate into heterocysts appears to be a function of time when a source of fixed nitrogen is absent or a function of growth phase when nitrate is supplied. Although differentiation proceeds unchecked in the absence of patS and hetN expression, differentiation is asynchronous and non-random.  相似文献   

11.
PatS and products of nitrogen fixation control heterocyst pattern   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

12.
Nitrogen-fixing heterocysts are arranged in a periodic pattern on filaments of the cyanobacterium Anabaena sp. strain PCC 7120 under conditions of limiting combined nitrogen. Patterning requires two inhibitors of heterocyst differentiation, PatS and HetN, which work at different stages of differentiation by laterally suppressing levels of an activator of differentiation, HetR, in cells adjacent to source cells. Here we show that the RGSGR sequence in the 287-amino-acid HetN protein, which is shared by PatS, is critical for patterning. Conservative substitutions in any of the five amino acids lowered the extent to which HetN inhibited differentiation when overproduced and altered the pattern of heterocysts in filaments with an otherwise wild-type genetic background. Conversely, substitution of amino acids comprising the putative catalytic triad of this predicted reductase had no effect on inhibition or patterning. Deletion of putative domains of HetN suggested that the RGSGR motif is the primary component of HetN required for both its inhibitory and patterning activity, and that localization to the cell envelope is not required for patterning of heterocysts. The intercellular signalling proteins PatS and HetN use the same amino acid motif to regulate different stages of heterocyst patterning.  相似文献   

13.
In the model cyanobacterium Anabaena sp. PCC 7120, cells called heterocysts that are specialized in the fixation of atmospheric nitrogen differentiate from vegetative cells of the filament in the absence of combined nitrogen. Heterocysts follow a specific distribution pattern along the filament, and a number of regulators have been identified that influence the heterocyst pattern. PatS and HetN, expressed in the differentiating cells, inhibit the differentiation of neighboring cells. At least PatS appears to be processed and transferred from cell to cell. HetC is similar to ABC exporters and is required for differentiation. We present an epistasis analysis of these regulatory genes and of genes, hetP and asr2819, successively downstream from hetC, and we have studied the localization of HetC and HetP by use of GFP fusions. Inactivation of patS, but not of hetN, allowed differentiation to proceed in a hetC background, whereas inactivation of hetC in patS or patS hetN backgrounds decreased the frequency of contiguous proheterocysts. A HetC-GFP protein is localized to the heterocysts and especially near their cell poles, and a putative HetC peptidase domain was required for heterocyst differentiation but not for HetC-GFP localization. hetP is also required for heterocyst differentiation. A HetP-GFP protein localized mostly near the heterocyst poles. ORF asr2819, which we denote patC, encodes an 84-residue peptide and is induced upon nitrogen step-down. Inactivation of patC led to a late spreading of the heterocyst pattern. Whereas HetC and HetP appear to have linked functions that allow heterocyst differentiation to progress, PatC may have a role in selecting sites of differentiation, suggesting that these closely positioned genes may be functionally related.  相似文献   

14.
15.
16.
The upstream intergenic regions for each of four genes encoding Ser/Thr kinases, all2334, pknE (alr3732), all4668, and all4838, were fused to a gfpmut2 reporter gene to determine their expression during heterocyst development in the cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120. P(pknE)-gfp was upregulated after nitrogen step-down and showed strong expression in differentiating cells. Developmental regulation of pknE required a 118-bp upstream region and was abolished in a hetR mutant. A pknE mutant strain had shorter filaments with slightly higher heterocyst frequency than did the wild type. Overexpression of pknE from its native promoter inhibited heterocyst development in the wild type and in four mutant backgrounds that overproduce heterocysts. Overexpression of pknE from the copper-inducible petE promoter did not completely inhibit heterocyst development but caused a 24-h delay in heterocyst differentiation and cell bleaching 4 to 5 days after nitrogen step-down. Strains overexpressing pknE and containing P(hetR)-gfp or P(patS)-gfp reporters failed to show developmental regulation of the reporters and had undetectable levels of HetR protein. Genetic epistasis experiments suggest that overexpression of pknE blocks HetR activity or downstream regulation.  相似文献   

17.
18.
19.
The hetL gene from the cyanobacterium Nostoc sp. PCC 7120 encodes a 237 amino acid protein (25.6kDa) containing 40 predicted tandem pentapeptide repeats. Nostoc sp. PCC 7120 is a filamentous cyanobacterium that forms heterocysts, specialized cells capable of fixing atmospheric N(2) during nitrogen starvation in its aqueous environment. Under these conditions, heterocysts occur in a regular pattern of approximately one out of every 10-15 vegetative cells. Heterocyst differentiation is highly regulated involving hundreds of genes, one of which encodes PatS, thought to be an intercellular peptide signal made by developing heterocysts to inhibit heterocyst differentiation in neighboring vegetative cells, thus contributing to pattern formation and spacing of heterocysts along the filament. While overexpression of PatS suppresses heterocyst differentiation in Nostoc sp. PCC 7120, overexpression of HetL produces a multiple contiguous heterocyst phenotype with loss of the wild type heterocyst pattern, and strains containing extra copies of hetL allow heterocyst formation even in cells overexpressing PatS. Thus, HetL appears to interfere with heterocyst differentiation inhibition by PatS, however, the mechanism for HetL function remains unknown. As a first step towards exploring the mechanism for its biochemical function, the crystal structure of HetL has been solved at 2.0A resolution using sulfur anomalous scattering.  相似文献   

20.
In the absence of sufficient combined nitrogen, some filamentous cyanobacteria differentiate nitrogen-fixing heterocysts at approximately every 10th cell position. As cells between heterocysts grow and divide, this initial pattern is maintained by the differentiation of a single cell approximately midway between existing heterocysts. This paper introduces a mathematical model for the maintenance of the periodic pattern of heterocysts differentiated by Anabaena sp. strain PCC 7120 based on the current experimental knowledge of the system. The model equations describe a non-diffusing activator (HetR) and two inhibitors (PatS and HetN) that undergo diffusion in a growing one-dimensional domain. The inhibitors in this model have distinct diffusion rates and temporal expression patterns. These unique aspects of the model reflect recent experimental findings regarding the molecular interactions that regulate patterning in Anabaena. Output from the model is in good agreement with both the temporal and spatial characteristics of the pattern maintenance process observed experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号