首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that the adoptive transfer of lymphokine-activated killer (LAK) cells plus repetitive injections of recombinant interleukin 2 (IL 2) produced a marked reduction in established pulmonary metastases from a variety of murine sarcomas. The requirement for the exogenous administration of IL 2 prompted a subsequent examination of the role of IL 2 in the in vivo function of transferred LAK cells. The in vivo proliferation and migration patterns of lymphoid cells in C57BL/6 mice were examined after i.v. transfer of LAK cells alone, i.p. injection of IL 2 alone, or the combination of LAK cells and IL 2. A model for in vivo labeling of the DNA of dividing cells was used in which mice were injected with 5-[125I]-iodo-2'-deoxyuridine (125IUdR) and, 20 hr later, their tissues were removed and were counted in a gamma analyzer. A proliferation index (PI) was calculated by dividing the mean cpm of organs of experimentally treated mice by the mean cpm of organs of control mice. In animals given LAK cells alone, the lungs and liver demonstrated little if any uptake of 125IUdR above saline-treated controls (PI = 2.5 and 0.8, respectively, on day 5), whereas the same organs of mice receiving 6000 U of IL 2 alone displayed higher radiolabel incorporation (PI = 7.1 and 5.9, respectively). When mice were given LAK cells plus 6000 U of IL 2, their tissues showed an additional increase in 125IUdR uptake. In the spleen, kidneys, and mesenteric lymph nodes, IL 2 treatment alone (6000 U) produced elevated PI values that were not, however, additionally increased if LAK cells were also administered. To separate the stimulatory effects of IL 2 on host lymphocyte proliferation from similar IL 2 effects on injected LAK cells, these studies were repeated in mice immunosuppressed by 500 rad total body irradiation. Pre-irradiation of the host sufficiently reduced endogenous lymphoid expansion stimulated by IL 2 so as to allow the demonstration that IL 2 also induced the proliferation of the transferred LAK cells. A variety of studies confirmed that the injected LAK cells were actively proliferating in tissues in vivo under the influence of IL 2. Substitution of "normal" LAK cells with fresh and cultured (without IL 2) splenocytes, or irradiated LAK cells did not result in increased 125IUdR uptake in tissues. Histologic studies corroborated the findings of the 125IUdR incorporation assays and revealed extensive lymphoid proliferation in irradiated mice receiving LAK cells plus IL 2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Interleukin 2 (IL 2) in high concentration induces lymphocytes to become nonspecifically cytolytic to a wide variety of tumor targets. We evaluated the therapeutic potential of such lymphokine-activated killer (LAK) cells in vivo and high-dose II 2 in vivo against disseminated murine leukemia. To quantitate the potential anti-leukemia effect of LAK cells in vivo, B6 mice were injected i.p. with graded doses of FBL-3 leukemia cells followed by LAK cells. In this Winn-type assay, 1 X 10(7) LAK cells were able to prevent the outgrowth of 1 X 10(2) FBL-3 cells in only 50% of mice and did not prevent the outgrowth of 1 X 10(6) tumor cells. Thus LAK cells, highly cytolytic to FBL-3 in vitro, mediated only a limited anti-tumor effect when applied directly to leukemia cells in vivo. LAK cells used as an adjunct to chemotherapy induced a small but non-curative effect against FBL-3, however. In this circumstance, LAK cells were markedly less effective than were immune spleen cells from mice previously sensitized to FBL-3. To test the anti-leukemia effect of high-dose IL 2 in vivo, B6 mice were inoculated with 5 X 10(6) FBL-3 cells followed by repeated doses of IL 2 at dose levels shown to induce LAK in vivo. "LAK-inducing" IL 2 doses on days 5 to 9 after FBL-3 inoculation, when tumor was disseminated, cured 50% of the mice. Treatment on days 5 to 9 was far more effective than on days 0 to 4, implying that the evolution of a host-tumor interaction was essential for the therapeutic effect of IL 2. Mice cured of FBL-3 by high-dose IL 2 were found to be immune to FBL-3, suggesting that tumor eradication resulted from a collaboration between LAK activity and tumor-specific immunity.  相似文献   

3.
4.
This study was designed to isolate and phenotypically characterize lymphokine-activated killer (LAK) cells generated in vivo during administration of high dose rIL-2 to cancer patients. The development of circulating LAK effector cells in these patients was demonstrated by the ability of fresh PBL to exhibit lytic activity against the NK-resistant Daudi cell line and fresh tumor cells without prior in vitro culture with rIL-2. Kinetic studies demonstrated that circulating LAK effector cells are detectable 4 to 6 wk after the initiation of rIL-2 therapy. Cells isolated by FACS revealed that circulating LAK cells are Leu-19+, Leu-17+ but CD5-. We have previously reported that circulating Leu-19+ cells are heterogeneous with regard to the expression of CD16 and CD8. Since sorting of cells expressing Leu-19 and either low quantities of CD8 or CD16 resulted in cytolytic activity in both the positive and negative fractions, these latter two markers do not identify subpopulations of Leu-19+ cells with or without LAK cytolytic activity. Although all LAK cells generated in vivo were Leu-19+, we generated LAK cells from the Leu-19- subpopulation after in vitro culture with rIL-2, suggesting that at least some of in vitro generated LAK cells are derived from Leu-19- precursor cells. These LAK cells did not, however, express the Leu-19 surface marker. Based on the functional data reported in this paper, we conclude that circulating LAK effector cells are a phenotypically heterogeneous population that express surface Ag in association with NK cells and not T lymphocytes.  相似文献   

5.
6.
Recent work in our laboratory has demonstrated that the repeated injections of high doses of recombinant interleukin 2 (IL 2) can dramatically reduce the number of established pulmonary and hepatic metastases and the growth of intradermal tumors in a variety of murine tumor models. We have thus undertaken studies to define the mechanisms underlying these in vivo effects of IL 2. Using an in vivo DNA-labeling technique in which we employed 5-[125I]iodo-2'-deoxyuridine (125IUdR), we examined the in vivo cell proliferation in the tissues of mice treated with IL 2. A proliferation index (PI) was calculated by dividing the raw counts per minute (cpm) of tissues in IL 2-treated mice by the cpm in corresponding tissues of control animals. At an IL 2 dose of 6000 U given i.p. three times a day, the highest 125IUdR incorporation was seen in the lungs, liver, spleen, kidneys, and mesenteric lymph nodes (PI = 6.9, 6.9, 5.1, 7.1, 24.6, respectively, at 5 days). The amount of lymphoid proliferation in these organs was a direct function of the dose of IL 2 administered. Other tissues including thymus, intestines, skin, and hind limb showed no significant increase in 125IUdR uptake even after host treatment with the highest doses of IL 2. Blood and brain demonstrated intermediate incorporation of the radiolabel. Preirradiation of the host largely eliminated the proliferative response to IL 2. Histologic studies of normal and irradiated mice receiving IL 2 corroborated the result of the 125IUdR findings. In normal IL 2-treated mice, large collections of activated lymphoid cells were seen, most prominently in the lungs, liver, and kidneys, whereas markedly decreased lymphoid proliferation was evident histologically in preirradiated mice. A fluorescein-labeled monoclonal antibody directed against the Thy-1.2 surface determinant was used to identify these dividing cells in frozen tissue sections as T lymphoid cells. Activated lymphocytes isolated from the lungs, liver, spleen, and mesenteric lymph nodes of IL 2-treated mice demonstrated significant lysis of a fresh murine sarcoma target in short-term 51Cr-release assays. These studies demonstrate that the systemic administration of recombinant IL 2 causes in vivo activation and proliferation of host lymphoid cells and has important implications for the adoptive immunotherapy of tumors.  相似文献   

7.
Lymphokine-activated killer (LAK) cells are currently being evaluated in several cancer centers for the immunotherapy of patients with a variety of cancers. Understanding the in vivo distribution of LAK cells should help to optimize their antitumor efficacy. As a model system to examine this issue, nylon wool column-passed rat lymphocytes were cultured in the presence of rIL-2 for 1 and 2 days. The resulting cells were divided into two populations; one that adhered to the plastic flasks and the second which did not adhere. The adherent cells were found to be highly cytotoxic against NK-sensitive and NK-resistant targets, whereas the nonadherent cells were unable to kill NK-resistant targets unless T cells were removed from this population. These results indicate that T cells present in IL-2 activated bulk splenocytes may interfere with the activity of LAK cells. Adherent or nonadherent LAK cells were evaluated for their pattern of in vivo distribution after i.v. inoculation. These cells were found to display a restricted pattern of distribution, localizing mainly in the lungs at 2 h after i.v. injection but redistributing into the liver and the spleen by 24 h. LAK cells were rarely recovered from the lymphoid tissues, including the peripheral lymph nodes and the mesenteric lymph nodes. However, if T cells were not removed from the LAK cell population, some radioactivity was recovered from the peripheral and mesenteric lymph nodes. Fractionation of 2 day-activated, nonadherent population on discontinuous Percoll resulted in the enrichment of large granular lymphocyte (LGL)/LAK activity in low density fractions (42% and 45% Percoll), whereas high density fraction (70% Percoll) contained T cells which showed no cytolytic activity. Upon transfer into syngeneic rats, the 42% fraction showed typical LAK migration. In contrast, the 70% fraction showed typical T cell migration. What is more important, removal of the granulated cells resulted in a population which have no granules and resemble large agranular lymphocytes known to be pre-LGL/LAK cells. Large agranular lymphocytes showed a pattern of distribution different from both T and LGL/LAK cells.  相似文献   

8.
Lysis of human monocytes by lymphokine-activated killer cells   总被引:5,自引:0,他引:5  
Human peripheral blood leukocytes (PBL), stimulated in vitro with recombinant human interleukin 2 (IL-2) for 2-7 days, were seen to lyse autologous and allogeneic monocytes in a 4-hr 51Cr-release assay. The lymphokine-activated killer (LAK) cells against monocytic cells were selective in that polymorphonuclear leukocytes (PMN) and nonadherent PBLs were not lysed by these cells. Monocytes which had been cultured for 2-7 days served as better targets than uncultured cells. Also, kinetic studies demonstrated parallel activation of cytolytic activity against monocyte targets and FMEX, an natural killer cell-insensitive human melanoma target. Separation of PBLs by discontinuous density centrifugation identified the effector population in the fractions enriched for large granular lymphocytes (LGL). Precursor cells were seen to express CD2, CD11, and some CD16 markers, but not CD3, CD4, CD8, CD15, Leu M3, or Leu 7. The effector population after IL-2 activation retained the phenotype of the precursor cell. These studies indicate that IL-2 can generate LAK cells against monocytic cells, and this cytolytic activity, especially against autologous monocytes, must be taken into account when IL-2 or LAK cells are used for immunomodulation in cancer patients.  相似文献   

9.
The selective inhibition of murine cytotoxic T lymphocyte (CTL) differentiation in C57B1/6 (B6) anti-DBA/2 mixed leukocyte cultures (MLC) by the amino acid L-ornithine (Orn) could not be reversed by addition of up to 1000 U/ml IL-2. Analysis of the effects of Orn on induction of lymphokine-activated killer (LAK cells), using dosages of IL-2 from 10-1000 U/ml and measuring cytolytic activity against two tumor targets (P815 and YAC-1) over the course of 5 days, indicated that LAK cells were not suppressed by Orn. LAK precursors and effector cells were CD8- and ASGM1+, indicating that they were derived from natural killer (NK) cells. We also found that the growth and maintenance of cloned CTL lines were not sensitive to inhibition by Orn; nor was their acquisition of nonspecific cytolytic activity in the presence of high lymphokine concentrations. Thus, induction of naive CTL shows differential susceptibility to Orn inhibition relative to LAK and LAK-like activities by NK and cloned CTL lines in response to IL-2.  相似文献   

10.
We analyzed the antigenic phenotype of lymphokine-activated killer (LAK) effector cells. Human blood lymphocytes were cultured for 3 days with 100 U/ml recombinant interleukin 2 (rIL 2), subpopulations isolated with monoclonal antibodies and a fluorescence-activated cell sorter (FACS) and assayed for cytotoxic activity against 51chromium labeled noncultured melanoma tumor cells. Initial experiments compared the LAK effector function of CD5+ T lymphocytes vs CD5- cells (predominantly CD16+ NK cells). The mean percent specific release at a 10:1 effector:target (E:T) ratio was 25% +/- 16 for CD5- cells, 10% +/- 6 for CD5+ cells, and 22% +/- 9 for unsorted cells. In contrast, when lymphocyte subpopulations were isolated before rIL 2 culture (LAK precursors), CD5- cells but not CD5+ cells developed LAK activity (28% +/- 12 vs 1% +/- 1, mean percent specific release, 10:1 E:T ratio), confirming our previous results showing that only CD16+ cells were LAK precursors. The discrepancy between LAK effector and precursor phenotypes suggested that LAK precursors acquired CD5 determinants during rIL 2 culture; however, double label immunofluorescence of rIL 2 cultured CD16+ cells showed that this was not the case. The data suggested that in the presence of other cell types, some T lymphocytes may develop LAK activity, but purified blood T lymphocytes do not develop LAK function when cultured with rIL 2 alone. We also analyzed LAK effector function in lymphocyte subpopulations defined by CD4 and CD8 antigens. The data showed that lymphocytes with a low density expression of CD8 and no expression of CD4 were enriched for LAK effector cells, whereas CD4+ and CD8- had less activity than unsorted cells. Lymphocytes with a high density expression of CD8 had activity similar to unsorted cells. We also assessed the contribution of Leu-7 (HNK-1) granular lymphocytes to LAK effector function. After culture with IL 2, lymphocytes were depleted of Leu-7+ cells by antibody and complement treatment and then were sorted into CD5+ and CD5- fractions. The cytotoxic activity of Leu-7-CD5+ cells was a mean 5% +/- 5 vs a mean 14% +/- 8 for the total CD5+ population (20:1 E:T ratio). The activity of Leu-7- CD5- was slightly less than the total CD5- fraction (21% +/- 9 vs 28% +/- 14, 10:1 E:T ratio). In conclusion, LAK effector function was highest in non-T cell (CD5- CD16+) populations and some activity was also present in T cell populations (CD5+ and predominantly Leu-7+).  相似文献   

11.
Summary Rat lymphokine-activated killer (LAK) cells, generated by adhering rat splenocytes isolated from the 52% Percoll density fraction to plastic flasks, demonstrate restricted in vivo tissue distribution, localizing in the lungs and liver after 2 h, but redistributing into the liver and spleen 24 h after i.v. administration. However, a different pattern of distribution was observed when this population of LAK cells was labeled with one of four commonly used radioisotopes. For example, LAK cells showed a high distribution into the lungs 30 min after administration when labeled with51Cr,125I-dUrd or111In-oxine, whereas111InCl-labeled LAK cells showed an equal distribution into the blood, lungs and liver at this time. Two hours after administration, cells labeled with111In-oxine showed an equivalent distribution into the lungs and liver, those labeled with125I-dUrd or51Cr showed a high accumulation in the lungs, whereas those labeled with111In-Cl entered more into the liver and blood. The pattern of distribution of111In-Cl- or111In-oxine-labeled cells was confirmed using gamma camera imaging analysis. By 24 h, LAK cells labeled with111InCl,111In-oxine or51Cr distributed in the liver and spleen in variable concentrations. In contrast, cells labeled with125I-dUrd were not detected in any organ tested.This study was paralleled by monitoring the distribution of LAK cells labeled with Hoechst 33342 (H33342) and analyzed for the presence of fluoresceinated cells in different organs either by flow cytometry analysis, or in frozen section. The data indicate that the distribution pattern of LAK cells labeled with111In-oxine is the closest to the distribution of H33342-labeled cells. Of all the radioisotopes used,125I-dUrd has the most disadvantages and is not recommended for monitoring the in vivo distribution of leukocytes.  相似文献   

12.
Summary A wide variety of human cancers currently have no effective treatment and are potential targets for lymphokine-activated killer (LAK) cellular immunotherapy. Relapsed acute lymphocytic leukemia (ALL) and neuroblastoma are two of the major therapeutic challenges in pediatric oncology today. However, one problem which makes LAK immunotherapy in children particularly difficult is obtaining the large numbers of cells required. Present adult therapeutic LAK protocols have utilized short-term (5 day) cultures of interleukin-2 (IL2)-activated cells which are initially obtained from leukophersis. Since routine use of this procedure in small children is not practical, we have investigated a different approach to obtain increased cell numbers by activation of peripheral blood mononuclear cells with OKT3, a mitogenic anti-CD3 monoclonal antibody, and IL2. Cell growth and LAK activity in OKT3+IL2-activated cultures were compared to cultures activated with IL2 alone in 2 children with relapsed ALL and 2 children with stage IV neuroblastoma. OKT3+IL2-activated cultures had marked increases in cell number: after 14 days the OKT3+IL2-activated cultures yielded an approximately 500-fold increase in cell number compared to a 7-fold increase for cultures activated with IL2 alone. In vitro 51Cr release assays were used to estimate LAK activity of the cultures at 7 and 14 days. When tested against HL60, a natural killer (NK)-resistant tumor cell line, not only were total cytolytic units greatly increased in OKT3+IL2-stimulated cultures but lytic activity on a per cell basis (lytic units/1×106 cells) had also markedly increased on day 14 of culture. Phenotypic analysis demonstrated that 80% to 90% of cells in OKT3+IL2-stimulated cultures were CD3+ T cells. Variable low percentages of CD16+ NK cells were seen in these cultures. In summary, OKT3+IL2 activation resulted in a large increase in cell yield and the development of high level LAK activity using peripheral blood mononuclear cells from children with cancer. This approach may facilitate the utilization of increased cell numbers in future adoptive immunotherapy protocols, especially in pediatric patients.Supported by the Children's Cancer Research Fund, and the USPHS Training Grant T32CA09445Supported by NIH AI17687, AI18326, AI19007, and AI72626  相似文献   

13.
Our previous studies demonstrated that the incubation of human peripheral blood lymphocytes or murine splenocytes in recombinant interleukin 2 (RIL 2) resulted in the generation of lymphokine-activated killer (LAK) cells capable of lysing a broad spectrum of fresh tumors in short-term chromium-release assays. Moreover, injections of LAK cells plus RIL 2 were highly effective in eliminating established 3 day metastases in the lung and liver (1-3). We have examined several parameters to define whether or not the cytolytic activity of LAK cells as measured in vitro correlated directly with the in vivo anti-tumor efficacy of adoptively transferred LAK cells. LAK cells plus RIL 2 could mediate marked reductions of established pulmonary metastases in mice rendered T cell deficient by adult thymectomy and lethal, total body irradiation followed by reconstitution with T cell-depleted bone marrow and spleen cells. Thus there was no requirement for additional T lymphocytes of host origin for successful therapy with adoptively transferred LAK cells plus RIL 2. Fresh splenocytes depleted of T cells by anti-Thy-1.2 monoclonal antibody plus complement generated LAK cells that were as highly lytic to fresh tumor in vitro and were as effective in reducing established pulmonary metastases as those generated from untreated or complement-treated splenocytes. Thus the precursor to LAK cells with anti-tumor activity in vitro and in vivo did not express the Thy-1 antigenic marker. In contrast, treatment of LAK effector cells (those generated from a 3-day incubation of fresh, normal splenocytes in RIL 2) with anti-Thy-1.2 antibody plus complement reduced or abolished their in vitro cytolytic activity. However, when combined with the systemic administration of RIL 2, these T cell-depleted, non-lytic LAK cells remained as effective in reducing the number of established pulmonary metastases upon adoptive transfer as untreated or complement-treated lytic LAK cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Induction of murine lymphokine-activated killer cells by recombinant IL-7   总被引:7,自引:0,他引:7  
The data demonstrate that IL-7, a cytokine that was originally identified, purified, and cloned based upon its ability to support the growth of pre-B cells in vitro, also induces proliferation and promotes the generation of lymphokine-activated killer (LAK) cell activity in populations of resting peripheral lymphoid cells. Although the kinetics of LAK induction by IL-7 (which peaked at days 6 to 8 of culture) was slower than that detected in cultures containing IL-2 (which peaked at day 4), IL-7 was significantly more effective at maintaining cytotoxic activity over longer periods of time, and greater viable cell recoveries, than was IL-2. A wide range of murine tumor target cells were found to be lysed in an MHC-unrestricted fashion by IL-7 induced LAK, but syngeneic Con A-induced lymphoblasts were not; nor were target cells from the human tumors K562 or Daudi lysed by IL-7 LAK. IL-7 LAK were induced in populations of lymphoid cells obtained from secondary lymphoid tissues (peripheral lymph nodes and spleen), but not from primary lymphoid tissues (thymus and bone marrow). LAK induced by IL-7 from unfractionated populations of lymphoid cells were completely eliminated by treatment with anti-CD8 or anti-Thy-1+C, and unaffected by treatment with anti-CD4, anti-asialo GM1 or anti-NK1.1+C. Interestingly, although no detectable CD4+ effector cells could be detected in populations of LAK generated from unfractionated populations of lymphoid cells stimulated by IL-7, they were found to be generated from populations of lymphoid cells from which CD8+ cells had been eliminated before being cultured in medium containing IL-7. These data suggest that CD4+ T cells do not normally give rise to IL-7-induced LAK unless they are first separated from CD8+ T cells. LAK induced by IL-7 appear to be distinct from LAK activity induced by IL-2 in that there is no detectable involvement of NK-like effector cells at either the precursor or effector cell stages.  相似文献   

15.
Murine as well as human lymphokine-activated killer (LAK) cells have been reported to have several characteristics of T lymphocytes and to be clearly distinct from natural killer (NK) cells. The present study of murine LAK cells showed that cytotoxic cells generated in the presence of interleukin 2 IL 2 were heterogeneous with respect to cell surface markers of progenitor as well as effector cells. Negative selection of cells with antibodies and complement or positive selection by fluorescence-activated cell sorting unequivocally showed that LAK effector cells consisted of at least two clearly distinct populations, the relative contribution of which was dependent on donor organ and target cells studied. Approximately 40% of the cytotoxic activity of spleen-derived effector cells active against the NK-resistant targets EL-4 or MCA-5 was eliminated by treatment with antibodies to the NK-markers asialo-GM1 and NK 1 (NK-LAK). Approximately 60% of cytotoxic activity was associated with cells expressing the T cell marker Lyt-2, lacked NK 1, and was lacking or expressed only small amounts asialo-GM1 (T-LAK). The NK-LAK cells were of greater importance for the cytotoxic activity against the standard NK target YAC-1, although T-LAK cells also excerted significant cytotoxicity against this cell line. Limiting dilution analysis estimated that the minimal frequency of precursors developing into cells with cytotoxic activity against EL-4 was 1/6700 in spleen and 1/4200 in peripheral blood. The frequency of cells developing into cytotoxic effectors against YAC-1 cells was 1/3700 and 1/1450 in spleen and peripheral blood, respectively. Depletion of progenitor cells from spleen or peripheral blood expressing NK 1 or Lyt-2 by treating the cells with antibodies to these structures and complement indicated that NK-1-expressing cells were the dominating progenitor of the LAK cells irrespective of target cells used. Culture of murine lymphoid cells from spleen or peripheral blood with high concentrations of IL 2 results in the emergence of two different killer cell populations with phenotypic similarities to NK and T cells, respectively, both being able to kill targets resistant to resting NK cells. In contrast to numerous earlier reports, we concluded that LAK cells are heterogeneous with respect to surface markers, with a major population of LAK cells apparently representing IL 2-activated cells expressing cell surface markers associated with NK cells.  相似文献   

16.
We have investigated the role of interleukin-2 (IL2) as a differentiation factor for human marrow-derived NK cell progenitors and have assessed the effects of interleukin-1 (IL1) on this activity. The effects of these cytokines on early NK cell precursors was determined by testing marrow which had been depleted of mature cells and of CD2+ cells by treatment with soybean agglutinin and sheep erythrocytes (SBA-E-BM). The cytolytic activities of the SBA-E-BM were tested in 51Cr release assays following 7-8 days of liquid culture. K562 targets were used to assess NK activity and NK-resistant Daudi targets were used to measure lymphokine-activated killer (LAK) cell activity. Neither NK nor LAK activity were measurable in marrow incubated in medium without cytokines, or in medium containing IL1 alone. In contrast, culture in medium containing IL2 resulted in a dose-dependent development of lytic activity. NK and LAK activities could be differentiated by the percentage of cultures in which the activity developed, the dose of IL2 required, the time kinetics of induction, and the effect of depletion of residual cells with NK phenotype prior to culture. The most lytically active effectors of both activities, however, were CD56+. Immunofluorescence analyses before and after culture with IL2 revealed that Leu19+ (CD56) cells increased from less than 2% to as much as 17% of the total marrow cells and showed the appearance of a population of CD56+CD16- cells. The addition of IL1 to the marrow cultures increased NK activity when suboptimal amounts of IL2 were used (less than or equal to 100 U/ml), but did not increase LAK activity at any concentration of IL2. A higher number of NK cells, as well as MY7+(CD13+) myeloid cells were recovered from cultures containing IL1 plus IL2, indicating that NK cells as well as myeloid cells had a growth advantage in the presence of IL1. IL2 receptor (CD25) expression was low in all cultures but was consistently higher in cultures containing IL1 and IL2, however, CD25 was not coexpressed on NK cells. These studies indicate that early NK cell precursors can grow and differentiate in response to IL2 and that NK and LAK lytic activities may be acquired at different developmental stages. IL1 may serve to promote the responsiveness of NK cell progenitors to low concentration of IL2 by a mechanism which may not require expression of CD25.  相似文献   

17.
We have generated lymphokine-activated killer (LAK) cells from human thymocytes in order to assess the relationship between LAK cells and T cells. Fresh thymocytes lack natural cytotoxic activity, and cytotoxicity cannot be stimulated by short term (1 hr) incubation with interferon or recombinant interleukin 2 (rIL-2). In addition, thymocytes are phenotypically devoid of cells bearing the natural killer (NK)-associated markers cluster designation (CD) 16 and NKH-1. After culture for 5 to 8 days with rIL-2, thymocytes display high levels of cytotoxic activity against both NK-sensitive and NK-resistant targets. Thymocytes require slightly more IL-2 than do peripheral blood lymphocytes to generate LAK activity. We have examined the phenotype of the thymocyte LAK precursor and effector cells. Thymocyte LAK precursors are of low to medium density, CD1-negative, and predominantly CD3-negative. Although CD3-positive cells proliferate in response to rIL-2, they are low in cytolytic capabilities. The effector cells, like the LAK precursors, are low to medium density lymphocytes. The cytotoxic cells are predominantly CD3-negative, and cytotoxic activity cannot be blocked with the use of anti-CD3 monoclonal antibodies. The effector cells also lack most NK-associated markers (HNK-1, and the CD16 markers Leu-11b and B73.1) but possess the NK-associated marker NKH-1 (N901). The responsive cell appears to be at a very early stage of thymic development, and it does not appear to either require or express the CD3-T cell receptor complex.  相似文献   

18.
Summary High levels of cytotoxic activity against the natural killer (NK) cell-sensitive target K562 and the NK-resistant target UCLA-SO-M14 (M14) can be generated in vitro either by mixed lymphocyte culture (MLC) or by culture of lymphocytes in interleukin 2 (IL2) (lymphokine activated killer (LAK) cells). The purpose of this study was to identify similarities and differences between MLC-LAK and IL2-LAK cells and allospecific cytotoxic T cells. Induction of cytotoxicity against K562 and M14 in both culture systems was inhibited by antibodies specific either for IL2 or the Tac IL2 receptor. Like NK effector cells, the precursors for the MLC-LAK cells were low density large lymphocytes. However these precursors differed from the large granular lymphocytes that mediated NK cytolysis in sensitivity to the toxic lysosomotropic agent L-leucine methyl ester (LME). The resistance of the MLC-LAK precursors to LME indicated that the precursors included large agranular lymphocytes. Although interferon-gamma (IFN-gamma) is produced in MLC and in IL2 containing cultures, it is not required for induction of either type of cytotoxic activity. Neutralization of IFN-gamma in MLC-and IL2-containing cultures with specific antibodies had no effect on the induction of cytotoxic activities. Both allospecific cytotoxic T lymphocyte (CTL) and LAK activities were enhanced by IL2 and IFN-gamma at the effector cell stage. However, the mechanism of cytolysis was different in the two systems. NK- and MLC-induced LAK activities were independent of CD3-T cell receptor complex while CTL activity was blocked by monoclonal antibodies specific for the CD3 antigen. These results suggest that NK and the in vitro induced LAK cytotoxicities are a family of related functions that differ from CTL. Furthermore, MLC-induced and IL2-induced cytotoxicities against K562 and M14 appear to be identical.This work was supported by NIH grant CA34442  相似文献   

19.
Approximately 30% of cytolytic Lyt-2+ clones from primed mice are able to proliferate autonomously, i.e., independent of IL 2 derived from Lyt-2- cells after antigenic stimulation. H-2K- or -D-restricted induction of Lyt-2+ cells to autonomous proliferation requires Ia+ stimulator cells. A strict correlation was observed between the ability of Lyt-2+ clones to proliferative autonomously and to induce DH. Eventually, the growth of all Lyt-2+ cytolytic clones becomes dependent on exogenous IL 2, and their ability to induce DH is lost. Small Lyt-2+ cells can also be induced in primary cultures by antigen or concanavalin A to proliferate in the absence of exogenous IL 2. The frequency of autonomously proliferating small Lyt-2+ cells is the same as that of small Lyt-2+ cells proliferating in the presence of exogenous IL 2. IL 2 derived from Lyt-2- cells can augment proliferation of Lyt-2+ cells, but is not obligatory.  相似文献   

20.
Summary Lipopolysaccharides (LPS) were coupled to polystyrene beads in order to apply the LPS without toxicity. The antitumor activity of the LPS-immobilizing beads was studied in experiments in vitro and in vivo. In vitro studies showed that spleen cells from C3H/HeN mice stimulated by beads immobilizing LPS fromEscherichia coli produced cytolytic activity as strong as that of lymphokine-activated killer (LAK) cells. Spleen cells from Sprague-Dawley rats stimulated by beads immobilizing LPS fromSalmonella minnesota produced cytolytic activity stronger than that of LAK cells. However, spleen cells stimulated by beads immobilizing each component of the LPS separately could not induce cytolysis. Contact stimulation, even for a brief period, sufficed for cytolytic activity, and was enhanced by culture for 48–72 h. Through in vivo studies, the suppression of tumor growth and a prolongation of the survival time were observed in tumorbearing mice injected with spleen cells activated by beads immobilizing LPS fromE.coli, and in mice injected with LAK cells. The effect of the activated spleen cells was stronger than that of the LAK cells. In rats bearing metastatic tumors, spleen cells activated by beads immobilizing LPS fromS.minnesota suppressed lung metastases more strongly than did LAK cells. These findings indicate that LPS immobilized by beads induced killer cells more strongly than interleukin-2. Ex vivo immunomodulation with LPS-immobilizing beads can be applied usefully as an anticancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号