首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional mutagenesis (UV irradiation and exposure to nitrosoguanidine) as well as protoplast formation and regeneration were used to improve the antibiotic activity of a Streptomyces fradiae strain producing tylosin. Variants exceeding the activity of the initial producer strain by 0.5–28.3% were obtained. The most active variants were produced by a combined exposure to UV and nitrosoguanidine, as well as upon regeneration of protoplasts formed from the cells of clones produced by UV irradiation. Unstable inheritance of the trait of increased tylosin production was demonstrated.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 2, 2005, pp. 189–193.Original Russian Text Copyright © 2005 by Lyutskanova, Stoilova-Disheva, Peltekova.  相似文献   

2.
A wild strain of Bacillus pumilus was investigated for cellulase production, and putative mutants of this strain were screened for catabolite repression insensitivity after chemical mutagenesis using ethyl methanesulphonate (EMS) as a mutagenic agent. Out of four classes of mutants studied and classified according to their cellulase induction rate and level of cellulase production in the presence of high concentrations of glucose (2.6%[w/v]), classes III and IV exhibited cellulase production up to 6.2 mg cellulase and 11.4 mg cellulase per gram of dry cell mass respectively. These mutants were referred to as catabolite repression-insensitive when compared to the wild strain which exhibited a total repression of cellulase synthesis under the same conditions. How EMS triggered the catabolite repression insensitivity in these mutants was not established. However this mutation brought out new strains of cellulase hyperproducers (mutants 6 and 11) in the presence of glucose when compared to other cellulase producers such as Aspergillus terreus, A. nidulans and Trichoderma reesei, which exhibited catabolite repression of cellulase synthesis. These mutants were selected as the most promising candidates for cellulase synthesis even at high glucose concentration.  相似文献   

3.
The level of proteinase activity and the ratio of proteinases I and II, secreted byAspergillus terreus, a cellulase producer, was followed during its growth on media containing various carbon sources. Correlation was found between the level of proteinase secretion and the rate of change of the cellulase complex spectrum. The extracellular proteolytic system ofA. terreus was presented mainly by proteinase II (metalloproteinase) during cultivation under conditions favoring fast accumulation of low-molar mass cellulases. The results indicate that proteinase II could be responsible for the limited proteolysis of high-molar mass cellulases ofA. terreus into smaller enzymes of the cellulolytic complex, thus changing their substrate specificity.  相似文献   

4.
Summary A newly-isolated Escherichia coli mutant suffers only about 10% as many mutations as normal strains on exposure to nitrosoguanidine1. The responsible mutation, inm-1, maps at approximately minute 79 in the current E. coli genetic map. The mutant is normal for overall growth, nitrosoguanidine lethality, spontaneous mutagenesis, ultraviolet light lethality and mutagenesis, ethyl methanesulfonate lethality and mutagenesis, and the adaptive repair induced by alkylating agents. The existence of this mutation proves that nitrosoguanidine mutagenesis is not merely the result of reactions between the chemical and DNA, but requires specific cellular function(s), and underscores the peculiarity of nitrosoguanidine as a mutagen.  相似文献   

5.
Sugar cane bagasse was subjected to a mixed culture, solid substrate fermentation with Trichoderma reesei QM9414 and Aspergillus terreus SUK-1 to produce cellulase and reducing sugars. The highest cellulase activity and reducing sugar amount were obtained in mixed culture. The percentage of substrate degradation achieved employing mixed culture was 26% compared to 50% using separate cultures of the two molds. This suggests that the synergism of enzymes in mixed culture solid substrate fermentation have lower synergism than in pure culture.  相似文献   

6.
Conventional mutagenesis (UV irradiation and exposure to nitrosoguanidine) were used to produce and regenerate protoplasts, aiming at increasing the antibiotic activity of a Streptomycesfradiae strain producing tylosin. Variants exceeding the activity of the initial producer strain by 0.5-28.3% were obtained. The most active variants were produced by a combined exposure to UV and nitrosoguanidine, as well as upon regeneration of protoplasts formed from the cells of clones produced by UV irradiation. Unstable inheritance of the trait of increased tylosin production was demonstrated.  相似文献   

7.
Gao J  Weng H  Xi Y  Zhu D  Han S 《Biotechnology letters》2008,30(2):323-327
An endo-β-1,4-glucanase from a thermoacidophilic fungus, Aspergillus terreus M11, was purified 18-fold with 14% yield and a specific activity of 67 U mg−1 protein. The optimal pH was 2 and the cellulase was stable from pH 2 to 5. The cellulase had a temperature optimum of 60°C measured over 30 min and retained more than 60% of its activity after heating at 70°C for 1 h. The molecular mass of the cellulase was about 25 kDa. Its activity was inhibited by 77% by Hg2+ (2 mM) and by 59% by Cu2+ (2 mM).  相似文献   

8.
SUMMARY: Treatment of streptomyces spores with near UV light in the presence of photosensitizing 8-methoxypsoralen was effective in inducing auxotrophic mutations with good survival. This treatment should be a valuable alternative to nitrosoguanidine in the routine mutagenesis of industrial streptomycetes, particularly as there is reported to be a lack of cistron specificity in its action on other micro-organisms.  相似文献   

9.
The Aspergillus niger strain ZBY-7 was selected as the original strain of glucose-6-phosphate dehydrogenase production. After mutagenesis of the strain by means of UV irradiation and nitrosoguanidine, mutants of Aspergillus niger resistant to a certain metabolic inhibitor were obtained. Five of the mutants showed increased glucose-6-phosphate dehydrogenase production. The mutant resistant to antimycin A (Aspergillus niger AM-23) produced the highest level of glucose-6-phosphate dehydrogenase (695.9% of that produced by the original strain).  相似文献   

10.
The production of biomass and lovastatin by spore-initiated submerged fermentations of Aspergillus terreus ATCC 20542 was shown to depend on the age of the spores used for inoculation. Cultures started from older spores produced significantly higher titers of lovastatin. For example, the lovastatin titer increased by 52% when the spore age at inoculation rose from 9 to 16 days. The lovastatin titer for a spore age of 16 days was 186.5±20.1 mg L−1. The time to sporulation on surface cultures was sensitive to the light exposure history of the fungus and the spore inoculation concentration levels. A light exposure level of 140 μE m−2 s−1 and a spore concentration of 1,320 spore cm−2 produced the greatest extent of sporulation within about 50 h of inoculation. Sporulation was slowed in the dark and with diluted inoculants. A rigorous analysis of the data of statistically designed experiments showed the above observations to be highly reproducible.  相似文献   

11.
A comparative study on the saccharification of pretreated rice straw was brought about by using cellulase enzyme produced by Aspergillus terreus ATCC 52430 and its mutant strain UNGI-40. The effect of enzyme and substrate concentrations on the saccharification rate at 24 and 48 were studied. A syrup with 7% sugar concentration was obtained with a 10% substrate concentration for the mutant case, whereas a syrup with 6.8% sugar concentration was obtained with 3.5 times concentrated enzyme from the wild strain. A high saccharification value was obtained with low substrate concentration; the higher the substrate concentration used, the lower the percent saccharification. The glucose content in the hydrolysate comprised 80-82% of total reducing sugars; the remainder was cellobiose and xylose together. The hydrolysate supported the growth of yeasts Candida utilis and Saccharomyces cerevisiae ATCC 52431. A biomass with a 48% protein content was obtained. The essential amino acid composition of yeast biomass was determined.  相似文献   

12.
通过DNS法测定羊瘤胃源功能性细菌产生的纤维素酶和淀粉酶的活力,福林酚法测定产生的蛋白酶的活力,检测细菌产生酶的特性。同时检测菌株的发酵液对大肠埃希菌(ATCC25922)、副溶血弧菌(ATCC17802)、藤黄八叠球菌(HY78)和产气杆菌(AS1489)等指示菌的抑制能力,分析它们的抑菌活性。结果表明,羊瘤胃源细菌C13产生的纤维素酶活力最高,产酶量也最高;而细菌C5产淀粉酶活力和蛋白酶活力最高,产生淀粉酶和蛋白酶的能力也最高。抑菌活性检测发现,细菌C9对副溶血弧菌(ATCC17802)有很高的抑制作用,而细菌C12对大肠埃希菌(ATCC25922)的抑制能力最明显。  相似文献   

13.
Three different bld mutants from S. griseus ATCC 10137 were isolated by nitrosoguanidine mutagenesis. They simultaneously lost the capability of antibiotic production and the formation of pigments. The three bld mutants were differently affected by different carbon sources. Two of these mutants showed a high efficiency of transformation with several plasmid vectors, in contrast to the low efficiency of transformation showed by the wild type. We showed that S. griseus ATCC 10137 and the three bld mutants possess an enzymatic activity that protects their DNAs against the digestion by SacI. Antibiotic and pigment production, and low transformability with plasmid DNA were together restored in spontaneous spo+ revertants.  相似文献   

14.
Summary A phenylalanine-requiring strain of the unicellular blue-green bacterium Synechococcus cedrorum was isolated by means of penicillin enrichment following mutagenesis with nitrosoguanidine. Assays of pertinent enzymes indicated that prephenate dehydratase activity was absent in the mutant.  相似文献   

15.
 The strain Penicillium purpurogenum P-26 was subjected to UV irradiation and N-methyl-N′-nitro-N-nitrosoguanidine treatment and mutants were isolated capable of synthesizing cellulase under the conditions of a high concentration of glucose. Initially mutants resistant to catabolite repression by 2-deoxy-D-glucose were isolated on Walseth’s cellulose/agar plates containing 15–45 mM 2-deoxy-D-glucose. These mutants were again screened for resistance to catabolite repression by glycerol or glucose on Walseth’s cellulose/agar plates containing 50 g/l glycerol or 50 g/l glucose respectively. Four mutants with different sizes of clearing zone on Walseth’s cellulose/agar plates containing 50 g/l glucose were selected for flask culture. Among them, the mutant NTUV-45-4 showed better carboxymethylcellulase activity in flask culture containing 1% Avicel plus 3% glucose than did the parental strain. Received: 9 October 1995/Received revision: 27 November 1995/Accepted: 8 January 1996  相似文献   

16.
More than 600 micromycetes – representatives of different genera have been investigated for their ability to produce exogenous cellulases. Most of the investigated cultures were found to produce these enzymes, 24 cultures being thermophilic, and 18 thermotolerant. Cellulase or its derivatives proved to be the most favourable carbon source for cellulase secretion. None of the thermophilic cultures studied manifested the ability of exogenous exoglucanase biosynthesis. Using UV-rays as mutagen, a mutant strain A. terreus T-49 has been obtained being characterized by an increased endo-glucanase and cellobiase activity, as compared to the initial strains. The cellulase preparations of thermophilic micromycetes contain one cellulasic component: endo-glucanase, or two: endo-glucanase and cellobiase.  相似文献   

17.
We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.  相似文献   

18.
Several fungal endophytes of the Egyptian marine sponge Latrunculia corticata were isolated, including strains Trichoderma sp. Merv6, Penicillium sp. Merv2 and Aspergillus sp. Merv70. These fungi exhibited high cellulase activity using different lignocellulosic substrates in solid state fermentations (SSF). By applying mutagenesis and intergeneric protoplast fusion, we have obtained a recombinant strain (Tahrir-25) that overproduced cellulases (exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase) that facilitated complete cellulolysis of agricultural residues. The process parameters for cellulase production by strain Tahrir-25 were optimized in SSF. The highest cellulase recovery from fermentation slurries was achieved with 0.2% Tween 80 as leaching agent. Enzyme production was optimized under the following conditions: initial moisture content of 60% (v/w), inoculum size of 106 spores ml−1, average substrate particle size of 1.0 mm, mixture of sugarcane bagasse and corncob (2:1) as the carbon source supplemented with carboxymethyl cellulose (CMC) and corn steep solids, fermentation time of 7 days, medium pH of 5.5 at 30°C. These optimized conditions yielded 450, 191, and 225 units/gram dry substrate (U gds−1) of carboxylmethyl cellulase, filter-paperase (FPase), and β-glucosidase, respectively. Subsequent fermentation by the yeast, Saccharomyces cerevisiae NRC2, using lignocellulose hydrolysates obtained from the optimized cellulase process produced the highest amount of ethanol (58 g l−1). This study has revealed the potential of exploiting marine fungi for cost-effective production of cellulases for second generation bioethanol processes.  相似文献   

19.
为寻找新型的与纤维素酶相关转录调控因子,以嗜热毁丝霉(Myceliophthora thermophila ATCC42464)为研究材料,通过克隆嗜热毁丝霉mhr2基因序列,构建重组过表达载体,转化并筛选到转化子Mt O24中mhr2基因表达量比野生型菌株高204倍。蛋白浓度及酶活测定的结果显示,诱导培养72 h,转化子胞外蛋白浓度和滤纸酶活分别是野生菌的1.58和1.30倍;非诱导培养144 h,转化子胞外蛋白浓度和滤纸酶活分别是野生菌的1.87和1.49倍。实时荧光定量PCR的结果表明,转化子中主要纤维素酶基因egl1、egl3和cbh1、cbh2的表达量均有显著提高。研究初步证实了mhr2基因具有调控纤维素酶基因表达的功能。  相似文献   

20.
Biodegradation of lignocellulosic waste by Aspergillus terreus is reported for the first time. This isolate produced 250 CMCase (carboxymethyl cellulase or endoglucanase) U.ml-1 and biodegraded hay and straw during 3 days and the biomass production on straw was 5g.L-1dry weight from 0.25 cm2 inoculated mycellium. This strain secreted endocellulases and exocellulases in the culture medium, but some of the enzymes produced, remained cell membrane bound. Cell bound enzymes were released by various treatments. The highest amount of endoglucanase and exoglucanase was released when the cells were treated with sonication. Aspergillus terreus was added to two tanks containing sugar wastewater and pulp manufacturing waste, as a seed for COD removal. This fungus reduced the COD by 40–80 percent, also, ammonia was reduced from 14.5 mM to 5.6 mM in sugar beet wastewater. The effects of crude enzyme of this fungus for COD removal was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号