首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
P Tekamp-Olson  R Najarian  R L Burke 《Gene》1988,73(1):153-161
We have isolated the gene which encodes the glycolytic enzyme phosphoglucoisomerase (PGI) from the yeast Saccharomyces cerevisiae by functional complementation of a yeast mutant deficient in PGI activity with DNA from a wild-type yeast genomic library. The cloned gene has been localized by hybridization of specific DNA fragments to total yeast poly(A)+ RNA and by complementation of the mutant phenotype with subclones. The gene is expressed as an abundant mRNA of 1.9-kb and encodes a protein of 554 amino acids with an Mr of 61310. The nucleotide sequence of the gene as well as the 5' and 3' flanking regions are presented. The predicted PGI amino acid sequence shows a high degree of homology with the sequence predicted for human and mouse neuroleukin, a putative neurotropic factor. The codon usage within the coding region is very restricted, characteristic of a highly expressed yeast gene.  相似文献   

2.
3.
Summary The rag2 mutant of Kluyveromyces lactis cannot grow on glucose when mitochondrial functions are blocked by various mitochondrial inhibitors, suggesting the presence of a defect in the fermentation pathway. The RAG2 gene has been cloned from a K. lactis genomic library by complementation of the rag2 mutation. The amino acid sequence of the RAG2 protein deduced from the nucleotide sequence of the cloned RAG2 gene shows homology to the sequences of known phosphoglucose isomerases (PGI and PHI). In vivo complementation of the pgi1 mutation in Saccharomyces cerevisiae by the cloned RAG2 gene, together with measurements of specific PGI activities and the detection of PGI proteins, confirm that the RAG2 gene of K. lactis codes for the phosphoglucose isomerase enzyme. Complete loss of PGI activity observed when the coding sequence of RAG2 was disrupted leads us to conclude that RAG2 is the only gene that codes for phosphoglucose isomerase in K. lactis. The RAG2 gene of K. lactis is expressed constitutively, independently of the growth substrates (glycolytic or gluconeogenic). Unlike the pgi1 mutants of S. cerevisiae, the K. lactis rag2 mutants can still grow on glucose, however they do not produce ethanol.  相似文献   

4.
5.
6.
7.
8.
9.
The activity of fructose-1,6-bisphosphatase (FBP), a gluconeogenic enzyme, was determined in wild-type Saccharomyces cerevisiae X2180 grown in the presence of the glycolytic carbon sources, glucose, fructose, and galactose. The activities of phosphofructokinase (PFK), a glycolytic enzyme, and phosphoglucose isomerase (PGI), an enzyme functioning both in glycolysis and gluconeogenesis, were determined for purposes of comparison. A measurable amount of FBP activity was present in 20-h-old cells grown with moderate shaking in 1% glucose-nutrient or minimal medium. This activity increased significantly in 40 and 60-h-old cells. Similar levels of FBP activity were also present in 20-, 40-, and 60-h-old cells grown in 1% fructose-nutrient medium. A higher level of FBP activity was present in 20-h-old cells grown in 1% galactose-nutrient medium than in 20-h-old cells grown in 1% glucose- or fructose-nutrient medium. The FBP activity in glucose- or fructose-grown cells was higher than the corresponding activity in cells grown under similar conditions for 40 and 60 h in the presence of ethanol, a gluconeogenic carbon source. The PFK activity was significantly less in galactose- and ethanol-grown cells. The PGI activity was relatively constant in 20-, 40-, and 60-h-old cells grown in the presence of glucose, fructose, and galactose, but this activity was reduced approximately 50% in ethanol-grown cells. It is concluded from these results that, depending upon the concentration of carbon source and the time of incubation, FBP, a strictly gloconeogenic enzyme, is synthesized by S. cerevisiae grown in the presence of glycolytic carbon sources.  相似文献   

10.
11.
We have determined the nucleotide sequence of the gene for fructose-1,6-bisphosphatase from both Saccharomyces cerevisiae and Schizosaccharomyces pombe. The predicted protein sequence for fructose-1,6-bisphosphatase from S. cerevisiae contains 347 amino acids and has a molecular weight of 38,100; that from S. pombe, contains 346 amino acids and has a molecular weight of 38,380. Comparison of these amino acid sequences with each other and that of pig kidney fructose-1,6-bisphosphatase shows several regions of strong homology separated by regions of divergence. These homologous regions are likely candidates for functional domains. A gene cassette was constructed for fructose-1,6-bisphosphatase from S. cerevisiae and the gene cassette expressed from the regulated PHO5 and GAL1 promoters of yeast. Yeast cells expressing fructose-1,6-bisphosphatase, while growing on glucose, accumulated large amounts of enzyme intracellularly, suggesting that glucose-regulated proteolytic inactivation does not operate efficiently under these conditions. Growth on glucose was not inhibited by the expression of fructose 1,6-bisphosphatase.  相似文献   

12.
E C Hurt 《The EMBO journal》1988,7(13):4323-4334
In order to study the role of nucleoskeletal components for nuclear and cell division in the budding yeast Saccharomyces cerevisiae, we have employed a combined biochemical/genetic approach. We have identified a peripheral nuclear protein which appears to be located both at the nuclear membrane and the spindle pole body. The gene has been cloned and subsequently shown to be essential for cell growth. The DNA sequence of the gene has been determined. As deduced from the nucleotide sequence, the gene potentially codes for a novel 86 kd protein with a highly repetitive and conserved nine amino acid sequence motive in the middle part of the protein. The flanking amino- and carboxy-terminal regions have similarities to intermediate filaments and calcium binding proteins, respectively. It appears that the 86 kd protein is a regulated nucleoskeletal-like protein (NSP1) involved in the process of nuclear and/or cell division. The affinity-purified antibody against the yeast NSP1 protein stained the nucleus and centrosomes of mammalian MDCK (Madin Darby canine kidney) cells in indirect immunofluorescence.  相似文献   

13.
Using a gel retardation assay it was shown that the 87 bp DNA fragment (UAS87) containing the upstream activating sequence (UAS) of S. cerevisiae EN01 gene and a nuclear extract gave rise to three migration-retarded species specific to UAS87. Heat- or proteinase-treatment of the nuclear extract revealed that these species were protein-DNA complexes. The precise binding region of the protein identified by DNaseI protection analysis was found to include a CCAAACA sequence which forms a dyad-symmetrical structure. The amount of one of the three migration-retarded species significantly increased when cells were grown in medium containing a gluconeogenic carbon source. The introduction of pGCR8, a multicopy plasmid containing GCR1 gene, a regulatory gene controlling the expression of several glycolytic enzymes, showed no effect on the amount of three migration-retarded species.  相似文献   

14.
Six mutants lacking the glycolytic enzyme fructose 1,6-bisphosphate aldolase have been isolated in the yeast Saccharomyces cerevisiae by inositol starvation. The mutants grown on gluconeogenic substrates, such as glycerol or alcohol, and show growth inhibition by glucose and related sugars. The mutations are recessive, segregate as one gene in crosses, and fall in a single complementation group. All of the mutants synthesize an antigen cross-reacting to the antibody raised against yeast aldolase. The aldolase activity in various mutant alleles measured as fructose 1,6-bisphosphate cleavage is between 1 to 2% and as condensation of triose phosphates to fructose 1,6-bisphosphate is 2 to 5% that of the wild-type. The mutants accumulate fructose 1,6-bisphosphate from glucose during glycolysis and dihydroxyacetone phosphate during gluconeogenesis. This suggests that the aldolase activity is absent in vivo.  相似文献   

15.
16.
17.
The PRB1 gene of Saccharomyces cerevisiae encodes the vacuolar endoprotease protease B. We have determined the DNA sequence of the PRB1 gene and the amino acid sequence of the amino terminus of mature protease B. The deduced amino acid sequence of this serine protease shares extensive homology with those of subtilisin, proteinase K, and related proteases. The open reading frame of PRB1 consists of 635 codons and, therefore, encodes a very large protein (molecular weight, greater than 69,000) relative to the observed size of mature protease B (molecular weight, 33,000). Examination of the gene sequence, the determined amino-terminal sequence, and empirical molecular weight determinations suggests that the preproenzyme must be processed at both amino and carboxy termini and that asparagine-linked glycosylation occurs at an unusual tripeptide acceptor sequence.  相似文献   

18.
The pathway of sterol biosynthesis is highly conserved in all eucaryotic cells. We demonstrated structural and functional conservation of the rate-limiting enzyme of the mammalian pathway, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase), between the yeast Saccharomyces cerevisiae and humans. The amino acid sequence of the two yeast HMG-CoA reductase isozymes was deduced from DNA sequence analysis of the HMG1 and HMG2 genes. Extensive sequence similarity existed between the region of the mammalian enzyme encoding the active site and the corresponding region of the two yeast isozymes. Moreover, each of the yeast isozymes, like the mammalian enzyme, contained seven potential membrane-spanning domains in the NH2-terminal region of the protein. Expression of cDNA clones encoding either hamster or human HMG-CoA reductase rescued the viability of hmg1 hmg2 yeast cells lacking this enzyme. Thus, mammalian HMG-CoA reductase can provide sufficient catalytic function to replace both yeast isozymes in vivo. The availability of yeast cells whose growth depends on human HMG-CoA reductase may provide a microbial screen to identify new drugs that can modulate cholesterol biosynthesis.  相似文献   

19.
20.
CDC37基因编码的产物是一个参与蛋白激酶折叠成熟的分子伴侣蛋白,存在于多种真核生物中。在利用酵母双杂交系统筛选白念珠菌蛋白激酶Crk1相互作用蛋白时,获得一个CDC37同源基因。该基因编码区全长1524bp,编码一含508个氨基酸的蛋白质。其氨基酸序列与酿酒酵母Cdc37蛋白的序列同源性达41%。该基因在酿酒酵母中的表达能回复cdc37-1突变株的温度敏感表型,表明它能互补ScCDC37的功能。该基因命名为CaCDC37。Northern杂交显示,该基因在白念珠菌中呈组成型表达,转录水平不受形态转变和生长条件的影响;在crk1缺失株和CRK1高表达菌株中或者在cph1efg1双缺失株中,CaCDC37基因的转录水平没有明显变化。利用酵母双杂交系统分析CaCdc37与另外两个预测的白念珠菌分子伴侣蛋白CaSti1和CaHsp90的相互作用,结果表明CaCdc37能与CaSti1相互作用,而与CaHsp90的相互作用未能检测到。根据这些结果推测了CaCdc37可能的作用机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号