首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercellular adhesion molecule-4 (ICAM-4, LW blood group antigen), a member of the immunoglobulin superfamily expressed on red cells, has been reported to bind to CD11a/CD18 and CD11b/CD18 leukocyte integrins. The location of the ICAM-4 binding sites on CD11a/CD18 and CD11b/CD18 are not known. CD11/CD18 integrin I domains have been found to act as major binding sites for physiological ligands and a negatively charged glutamic acid in ICAMs is considered important for binding. ICAM-4 lacks such a residue, which is replaced by an arginine. However, we demonstrate here that ICAM-4 in red cells and transfected fibroblasts interacts specifically with the I domains of CD11a/CD18 and CD11b/CD18 integrins. The binding was inhibited by anti-I domain and anti-ICAM-4 antibodies and it was dependent on divalent cations. Interestingly, ICAM-4 negative red cells were still able to bind to the CD11b/CD18 I domain but the binding of these cells to the CD11a/CD18 I domain was clearly reduced. Using a solid phase assay, we were able to show that isolated I domains directly and specifically bind to purified recombinant ICAM-4 in a cation dependent manner. Competition experiments indicated that the binding sites in ICAM-4 for the CD11a and CD11b I domains are different. However, the ICAM-4 binding region in both I domains seems to overlap with the regions recognized by the ICAM-1 and ICAM-2. Thus we have established that the I domains contain an ICAM-4 binding region in CD11a/CD18 and CD11b/CD18 leukocyte integrins.  相似文献   

2.
The vascular E-selectin binds to the leukocyte integrins CD11/CD18   总被引:5,自引:0,他引:5  
Leukocyte adhesion involves at least three molecular familiesof adhesion proteins: the leukocyte integrins CD11/CD18, theintercellular adhesion molecules (ICAMs) and the carbohydrate-bindingL-, E- and P-selectins. The intercellular adhesion moleculesare well-known ligands for the CD11/CD18 integrins. We now showthat E-selectin specifically binds to the sialyl Lex carbohydrateepitopes of leukocyte integrins. Thus, the different familiesof leukocyte adhesion molecules form an integrated adhesionnetwork. adhesion integrins leukocyte selectin  相似文献   

3.
The role of beta2-integrins CD11b/CD18 and CD 11c/CD 18 in adhesion and migration of leukocytes on fibrinogen was studied. The monoclonal antibodies against CD11b inhibited the spontaneous adhesion of monocytic THP-1 cells on fibrinogen, whereas antibodies to CD11c more effectively inhibited the adhesion stimulated by chemokine MCP-1. By the RNA-interference method the clones of THP-1 with reduced expression of CD11b and general beta2-subunit CD18 were obtained. MCP-I stimulated the adhesion to fibrinogen of THP-1 cells of wild-type and mutant cells with reduced expression of CD11b (THP-1-CD11b-low), but not of cells with low expression of CD18 (THP-1-CD18-low). THP-1-CD18-low cells were also characterized by the impaired chemotaxis in presence of MCP-1. The data obtained suggest that spontaneous cell adhesion to fibrinogen is mediated to a greater extent by CD11b/CD18 integrins, while chemokine-stimulated adhesion and migration is mostly dependent on CD11c/CD18 molecules.  相似文献   

4.
5.
We have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1) and the complex of leukocyte surface adhesion molecules designated CD11/CD18 to the adhesion of human polymorphonuclear leukocytes (PMN) to cultured human endothelial cells (HEC), activated by rIL-1 beta for 4 or 24 h. Inhibition of PMN attachment to IL-1-activated HEC was measured in a quantitative in vitro monolayer adhesion assay, after treatment with mAb directed to ELAM-1 (mAb H18/17), and to CD11a (mAb L11), CD11b (mAb 44), CD11c (mAb L29), and CD18 (mAb 10F12), alone or in combination. Pretreatment of activated HEC with mAb H18/7 inhibited PMN adhesion by 47 +/- 8% whereas control mAb had no effect. CD11/CD18-directed mAb significantly blocked PMN adhesion to activated HEC (anti-CD11a, 40 +/- 3%; anti-CD11b, 34 +/- 4%; anti-CD18, 78+/- 6% inhibition). The combination of mAb H18/7 and each of the various anti-CD11/CD18 mAb resulted in greater inhibition of PMN adhesion than any Mab alone. After 24 h of rIL-1 beta treatment, when ELAM-1 was markedly decreased but elevated PMN adhesion was still observed, mAb H18/7 had no effect on PMN adhesion. At this time, CD11/CD18-dependent adhesive mechanisms predominated and a CD11c-dependent mechanism became apparent (anti-CD11a, 67 +/- 4% inhibition; anti-CD11b, 45 +/- 9%; anti-CD11c, 26 +/- 6%; anti-CD18, 97 +/- 1%). In summary, PMN adhesion to IL-1-activated HEC involves both CD11/CD18-dependent mechanisms and an ELAM-1-dependent mechanism, and the relative contribution of these varies at different times of IL-1-induced HEC activation. The additive blocking observed at 4 h with mAb H18/7 in combination with CD11/CD18-directed Mab implies that members of the CD11/CD18 complex do not function as an obligate ligand(s) for ELAM-1.  相似文献   

6.
《The Journal of cell biology》1989,109(6):3435-3444
The leukocyte CD11/CD18 adhesion molecules (beta 2 integrins) are a family of three heterodimeric glycoproteins each with a distinct alpha subunit (CD11a, b, or c) and a common beta subunit (CD18). CD11/CD18 mediate crucial leukocyte adhesion functions such as chemotaxis, phagocytosis, adhesion to endothelium, aggregation, and cell-mediated cytotoxicity. The enhanced cell adhesion observed upon activation of leukocytes is associated with increased surface membrane expression of CD11/CD18, as well as a qualitative upregulation of CD11/CD18 functions. To elucidate the nature of the qualitative modifications that occur, we examined the phosphorylation status of these molecules in resting human leukocytes and upon activation with PMA or with the chemotactic peptide F-met-leu-phe (FMLP). In unstimulated cells, all three CD11 subunits were found to be constitutively phosphorylated. In contrast, phosphorylation of the common CD18 subunit was minimal. PMA induced rapid and sustained phosphorylation of CD18 that occurred at high stoichiometry, but had only minimal effects on phosphorylation of the associated CD11 subunits. FMLP also induced rapid phosphorylation of CD18, but the effect was of short duration. FMLP-induced phosphorylation of CD18 was not related to its Ca++-mobilizing effect, as CD18 phosphorylation was not observed upon treatment of leukocytes with the Ca++ ionophore, ionomycin. Phosphoamino acid analysis of CD11/CD18 in PMA- or FMLP-treated monocytes revealed a predominance of phosphoserine residues in all CD11/CD18 subunits. A small component of phosphothreonine was present in CD11c and CD18 and a minor component of phosphotyrosine was also detected in CD18 upon leukocyte activation may regulate the adhesion functions mediated by the CD11/CD18 family of molecules.  相似文献   

7.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

8.
H2O2 activates CD11b/CD18-dependent cell adhesion   总被引:1,自引:0,他引:1  
Treatment of monoblastoid U-937 cells with low concentrations of H2O2 caused adhesion of the cells to plastic. The H2O2 induced adhesion was rapid with a t1/2 of congruent to 6 min and was optimally stimulated by 100 microM H2O2 with an ED50 of congruent to 50 microM. The response to H2O2 closely resembled the adhesive response of U-937 cells to phorbol esters in its time dependency, requirement for extracellular Mg2+ and inhibition by cytochalasin B as well as inhibition by monoclonal antibodies against the leucocyte adhesion molecules CD11b and CD18. Phorbol ester treatment of U-937 cells stimulated the phosphorylation of at least three endogenous substrates, pp28, pp34 and pp43, of which pp28 and pp43 also responded to H2O2-treatment with increased 32P-incorporation. The results suggest that H2O2 might be a physiological modulator of leucocyte adhesion, possibly operating by activating protein kinase C.  相似文献   

9.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

10.
ICAMs are ligands for LFA-1, a major integrin of mononuclear cells involved in the immune and inflammatory processes. We previously showed that endothelial cell specific molecule-1 (ESM-1) is a proteoglycan secreted by endothelial cells under the control of inflammatory cytokines. Here, we demonstrate that ESM-1 binds directly to LFA-1 onto the cell surface of human blood lymphocytes, monocytes, and Jurkat cells. The binding of ESM-1 was equally dependent on Ca(2+), Mg(2+), or Mn(2+) divalent ions, which are specific, saturable, and sensitive to temperature. An anti-CD11a mAb or PMA induced a transient increase in binding, peaking 5 min after activation. Direct binding of ESM-1 to LFA-1 integrin was demonstrated by specific coimmunoprecipitation by CD11a and CD18 mAbs. A cell-free system using a Biacore biosensor confirmed that ESM-1 and LFA-1 dynamically interacted in real time with high affinity (K(d) = 18.7 nM). ESM-1 consistently inhibited the specific binding of soluble ICAM-1 to Jurkat cells in a dose-dependent manner. These results suggest that ESM-1 and ICAM-1 interact with LFA-1 on binding sites very close to but distinct from the I domain of CD11a. Through this mechanism, ESM-1 could be implicated in the regulation of the LFA-1/ICAM-1 pathway and may therefore influence both the recruitment of circulating lymphocytes to inflammatory sites and LFA-1-dependent leukocyte adhesion and activation.  相似文献   

11.
Three fifteen-amino-acid polypeptides designated peptides 1, 2 and 3 were synthesised as likely candidates for mimicking the role of ICAM-2 as a ligand. The ability of each peptide to bind lymphoid cells was tested. Peptide 2 largely mediated cell attachment of unstimulated cells and this binding was only marginally increased by stimulating the cells with phorbol dibutyrate (P(Bu)2). Peptide 3 mediated minimal spontaneous cell attachment, but this binding was significantly enhanced following P(Bu)2 stimulation. Peptide 1 had no effect on cell attachment with or without stimulation. The cell attachment to peptide 2 was both temperature- and cation-dependent. Studies using specific monoclonal antibodies showed that with unstimulated cells, anti-VLA-4 alpha(CD49d) or beta chain (CD29) antibodies (KD4-13 and 4B4) and anti-CD18 (1B4) each partially inhibited the cell binding. Monoclonal antibodies against CD54 (ICAM-1; 84H10 or LB2), MHC class 1 (W6/32) and control mouse IgG had no effect. When anti-CD29 and anti-CD18 monoclonal antibodies were used concurrently, there was almost complete inhibition of the cell attachment. These observations indicated that cell adhesion via ICAM-2 is mediated: (i) predominantly by peptide 2 in unstimulated and P(Bu)2-stimulated cells, and also, to some extent, by peptide 3 in P(Bu)2-stimulated cells and (ii) by binding to both CD11/CD18 and CD49d/CD29 integrins.  相似文献   

12.
Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg(2+), a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.  相似文献   

13.
The group of leukocyte integrins CD11a-c/CD18 coordinate disparate adhesion reactions in the immune system through a regulated process of ligand recognition. The participation of the receptor divalent ion binding site(s) in this mechanism of ligand binding has been investigated. As compared with other divalent cations, Mn2+ ions have the unique property to dramatically stimulate the adhesive functions of the leukocyte integrin CD11b/CD18 (Mac-1), expressed on myelo-monocytic cells. This is reflected in a three- to fivefold increased early monocyte adhesion (less than 20 min) to resting, unperturbed endothelial cells, and increased association of CD11b/CD18 with its soluble ligands fibrinogen and factor X. CD11b/CD18 ligand recognition in the presence of Mn2+ ions is specific, time and concentration dependent, and inhibited by anti-CD11b mAb. At variance with Ca(2+)-containing reactions where CD11b/CD18 functions as an inducible receptor activated by adenine nucleotides or chemoattractants, Mn2+ ions induce per se a constitutive maximal ligand binding capacity of CD11b/CD18, that is not further modulated by cell stimulation. Rather than quantitative changes in surface density, Mn2+ ions increase the affinity of CD11b/CD18 for its complementary ligands up to 10-fold, as judged by Scatchard plot analysis of receptor:ligand interaction under these conditions. Furthermore, monocyte exposure to Mn2+ ions induces the expression of activation-dependent neo-antigenic epitopes on CD11b/CD18, selectively recognized by mAb 7E3. These data suggest that in addition to cell-activating stimuli, favorable engagement of divalent ion binding site(s) can provide an alternative pathway to rapidly regulate the receptor affinity of leukocyte integrins.  相似文献   

14.
Leu-CAMs (CD11/CD18) consisting of LFA-1, Mac-1, and p150/95 are leukocyte cell surface glycoproteins that are involved in various leukocyte functions. The asparagine-linked sugar chains were released as oligosaccharides from Leu-CAMs by hydrazinolysis. About 12 mol of sugar chains was released from 1 mol of Leu-CAMs. These sugar chains were converted to radioactive oligosaccharides by reduction with sodium borotritide and separated into neutral and acidic fractions by paper electrophoresis. All of the acidic oligosaccharides were converted to neutral ones by digestion with sialidase, indicating that they are sialyl derivatives. The neutral and sialdase-treated acidic oligosaccharides were fractionated by chromatography on lectin columns followed by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exo- and endoglycosidase digestion and by methylation analysis revealed that Leu-CAMs contain mainly high mannose type and high molecular weight complex type sugar chains. The latter sugar chains were of bi-, tri-, and tetraantennary complex types with the Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----and/or the Gal beta 1----3GlcNAc beta 1----groups together with the Gal beta 1----4GlcNAc group in their outer-chain moieties. In addition to these sugar chains, a small amount of monoantennary complex type and hybrid type sugar chains was found in Leu-CAMs. Furthermore, analysis of the asparagine-linked sugar chains released from the beta-subunit of Leu-CAMs by a series of lectin chromatography showed that subunit-specific glycosylation is not observed between the alpha- and beta-subunits of Leu-CAMs.  相似文献   

15.
We have studied adhesion of eosinophils to various forms of vascular cell adhesion molecule 1 (VCAM-1, CD106), an integrin counter-receptor implicated in eosinophil recruitment to the airway in asthma. Full-length 7d-VCAM-1, with seven immunoglobulin-like modules, contains integrin-binding sites in modules 1 and 4. The alternatively spliced six-module protein, 6d-VCAM-1, lacks module 4. In static assays, unactivated purified human blood eosinophils adhered similarly to recombinant soluble human 6d-VCAM-1 and 7d-VCAM-1 coated onto polystyrene microtiter wells. Further experiments, however, revealed differences in recognition of modules 1 and 4. Antibody blocking indicated that eosinophil adhesion to 6d-VCAM-1 or a VCAM-1 construct containing only modules 1-3, 1-3VCAM-1, is mediated by alpha4beta1 (CD49d/29), whereas adhesion to a construct containing modules 4-7, 4-7VCAM-1, is mediated by bothalpha4beta1 andalphaMbeta2 (CD11b/18). Inhibitors of phosphoinositide 3-kinase, which block adhesion of eosinophils mediated by alphaMbeta2, blocked adhesion to 4-7VCAM-1 but had no effect on adhesion to 6d-VCAM-1. Consistent with the antibody and pharmacological blocking experiments, eosinophilic leukemic cell lines lacking alphaMbeta2 did not adhere to 4-7VCAM-1 but did adhere to 6d-VCAM-1 or 1-3VCAM-1. Activation of eosinophils by interleukin (IL)-5 enhanced static adhesion to 6d-VCAM-1, 7d-VCAM-1, or 4-7VCAM-1; IL-5-enhanced adhesion to all 3 constructs was blocked by anti-alphaMbeta2. Adhesion of unstimulated eosinophils to 7d-VCAM-1 under flow conditions was inhibited by anti-alpha4 or anti-alphaM. IL-5 treatment decreased eosinophil adhesion to 7d-VCAM-1 under flow, and anti-alphaM had the paradoxical effect of increasing adhesion. These results demonstrate that alphaMbeta2 modulatesalpha4beta1-mediated eosinophil adhesion to VCAM-1 under both static and flow conditions.  相似文献   

16.
Adherence of neutrophils to endothelium is a key event in the sequence of inflammatory leukocyte responses. Double-color FACS analysis was used to determine the extent and kinetics of neutrophil adherence to rIL-1 beta-pretreated endothelial cells (EC). Neutrophils bound very avidly when the EC were prestimulated for 4 to 6 h with rIL-1 beta. Anti-ELAM-1 F(ab)2 fragments inhibited this adherence for more than 80%. On the other hand, anti-CD18 F(ab)2 fragments also inhibited the neutrophil adherence (40 to 50%). Combined use of anti-ELAM-1 and anti-CD18 F(ab)2 fragments completely prevented adherence. Neutrophils became activated as soon as they made contact with the rIL-1 beta-pretreated EC. First, neutrophils depleted of intracellular ATP showed a clearly decreased adherence completely dependent on ELAM-1-mediated binding, i.e., without additional effects of CD18 adhesion proteins. Thus, CD18 is activated during neutrophil adherence and then participates in the binding process. Secondly, the neutrophils responded with a transient rise in [Ca2+]i upon binding to rIL-1 beta-pretreated EC, which was demonstrated to be caused by endothelial cell-associated platelet-activating factor (PAF). However, the extent of neutrophil adherence to rIL-1 beta-pretreated EC was not affected by the use of the PAF-receptor antagonist WEB 2086, or removal of the EC-bound PAF. The only effect was a complete dependency of the neutrophil adherence on ELAM-1-mediated binding, although anti-CD18 mAb still induced 40 to 50% inhibition under these conditions. We therefore conclude that ELAM-1-mediated binding is the major mechanism for CD18 activation during neutrophil adherence to rIL-1 beta-pretreated EC.  相似文献   

17.
Abstract In this study direct immunofluorescence and flow cytometry with calibration using quantitative bead standards were used to enumerate the cell surface receptors CD11a/CD18, CD11b/CD18 and L-selectin. Holding blood at room temperature and fixation of samples prior to staining induced changes in expression, while immediate staining of polymorphonuclear granulocytes (PMN) in whole blood followed by fixation produced accurate values. The ranges of PMN adhesion molecule expression in 10 normal individuals were CD11a/CD18: 14794–28725, CD11b/CD18: 5300–11939 and L-selectin: 35662–61654 receptors per cell. Differences within individuals over 4 h were also observed. Adhesion molecule expression is used as an index of the adhesive function and state of activation of the cell. The data presented here shows that there is inherent variability in the expression of the PMN adhesion molecules between and within individuals, thus direct comparisons of PMN adhesion molecule expression between patients and “normals” must be interpreted with caution.  相似文献   

18.
Mac-1 (CD11b/CD18), a leukocyte-restricted integrin receptor, mediates neutrophil/monocyte adhesion to vascular endothelium and phagocytosis of complement-opsonized particles. Recent studies have shown that Mac-1 also functions as a receptor for fibrinogen in a reaction linked to fibrin deposition on the monocyte surface. In this study, we have used extended proteolytic digestion of fibrinogen to identify the region of this molecule that interacts with Mac-1. We found that an Mr approximately 30,000 plasmic fragment D of fibrinogen (D30) produced dose-dependent inhibition (IC50 = 1.6 microM) of the interaction of intact 125I-fibrinogen with stimulated neutrophils and monocytes. 125I-D30 bound saturably to these cells with specific association of 136,200 +/- 15,000 molecules/cell in a reaction inhibited by OKM1 and M1/70, monoclonal antibodies specific for the alpha subunit of Mac-1. Direct microsequence analysis and an epitope-mapped monoclonal antibody showed that D30 lacks the COOH-terminal dodecapeptide of the gamma chain as well as the Arg-Gly-Asp sequences in the A alpha chain. We conclude that fibrinogen interacts with the leukocyte integrin Mac-1 through a novel recognition site that is not shared with other known integrins that function as fibrinogen receptors.  相似文献   

19.
The interactions between cell surface receptors and sulfated glucosamineglycans serve ubiquitous roles in cell adhesion and receptor signaling. Heparin, a highly sulfated polymer of uronic acids and glucosamine, binds strongly to the integrin receptor alphaXbeta2 (p150,95, CD11c/CD18). Here, we analyze the structural motifs within heparin that constitute high affinity binding sites for the I domain of integrin alphaXbeta2. Heparin oligomers with chain lengths of 10 saccharide residues or higher provide strong inhibition of the binding by the alphaX I domain to the complement fragment iC3b. By contrast, smaller oligomers or the synthetic heparinoid fondaparinux were not able to block the binding. Semipurified heparin oligomers with 12 saccharide residues identified the fully sulfated species as the most potent antagonist of iC3b, with a 1.3 microM affinity for the alphaX I domain. In studies of direct binding by the alphaX I domain to immobilized heparin, we found that the interaction is conformationally regulated and requires Mg2+. Furthermore, the fully sulfated heparin fragment induced conformational change in the ectodomain of the alphaXbeta2 receptor, also demonstrating allosteric linkage between heparin binding and integrin conformation.  相似文献   

20.
Leukocyte adhesion deficiency (LAD) is a hereditary disease characterized by defective expression of leukocyte adhesion glycoproteins; lymphocyte function-associated Ag-1 (CD11a/CD18), CR3 (CD11b/CD18) and p150,95 (CD11c/CD18). Granulocytes, monocytes, and lymphocytes of patients with LAD show profoundly defective in vivo and in vitro adherence-dependent immune functions. We investigated the expression of FcR for IgG on polymorphonuclear cells (PMN) and monocytes from patients with LAD, and their luminol- and lucigenin-enhanced chemiluminescence production in response to SRBC sensitized with murine (m) IgG2a and IgG2b. Unstimulated patient PMN showed an enhanced chemiluminescence in response to mIgG2a-SRBC and an increased phagocytosis of mIgG2a-SRBC. The up-regulated functions were inhibited by monomeric human IgG in a dose-dependent manner, which was attributed to an increase in expression of FcRI on patient PMN, as shown by flow cytometry using monoclonal antibody, 32.2, specific for human FcRI. In contrast, neither the expression of FcR on the monocytes of LAD patients nor their FcR-mediated functions were different from those of controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号