首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim Y  Yun CW  Philpott CC 《The EMBO journal》2002,21(14):3632-3642
Siderophores are small iron-binding molecules that are synthesized and secreted in the iron-free form by microorganisms. Saccharomyces cerevisiae takes up iron bound to siderophores by two separate systems, one of which requires the ARN family of sidero phore-iron transporters. Arn1p and Arn3p are expressed in endosome-like intracellular vesicles. Here we present evidence that, in the absence of its specific substrate, ferrichrome, Arn1p is sorted directly from the Golgi to the endosomal compartment and does not cycle to the plasma membrane. When cells are exposed to ferrichrome at low concentrations, Arn1p stably relocalizes to the plasma membrane. At higher concentrations of ferrichrome, Arn1p relocalizes to the plasma membrane and rapidly undergoes endocytosis. Plasma membrane localization of Arn1p occurs only in the presence of its specific substrate, and not in the presence of other siderophores. Despite expression of Arn1p on the plasma membrane, mutant strains with defects in endocytosis exhibit reduced uptake of ferrichrome-iron. Thus, siderophores influence the trafficking of the Arn transporters within the cell and this trafficking is important for transporter function.  相似文献   

2.
Arn1 is an integral membrane protein that mediates the uptake of ferrichrome, an important nutritional source of iron, in Saccharomyces cerevisiae. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network to the vacuolar lumen for degradation. In the presence of low levels of ferrichrome, the siderophore binds to a receptor domain on Arn1, triggering the redistribution of Arn1 to the plasma membrane. When extracellular ferrichrome levels are high, Arn1 cycles between the plasma membrane and intracellular vesicles. To further understand the mechanisms of trafficking of Arn1p, we screened 4580 viable yeast deletion mutants for mislocalization of Arn1-GFP using synthetic genetic array technology. We identified over 100 genes required for trans-Golgi network-to-vacuole trafficking of Arn1-GFP and only two genes, SER1 and SER2, required for the ferrichrome-induced plasma membrane trafficking of Arn1-GFP. SER1 and SER2 encode two enzymes of the major serine biosynthetic pathway, and the Arn1 trafficking defect in the ser1Δ strain was corrected with supplemental serine or glycine. Plasma membrane trafficking of Hxt3, a structurally related glucose transporter, was unaffected by SER1 deletion. Serine is required for the synthesis of multiple cellular components, including purines, sphingolipids, and phospholipids, but of these only phosphatidylserine corrected the Arn1 trafficking defects of the ser1Δ strain. Strains with defects in phospholipid synthesis also exhibited alterations in Arn1p trafficking, indicating that the intracellular trafficking of some transporters is dependent on the phospholipid composition of the cellular membranes.  相似文献   

3.
The intracellular trafficking of Arn1, a ferrichrome transporter in Saccharomyces cerevisiae, is controlled in part by the binding of ferrichrome to the transporter. In the absence of ferrichrome, Arn1 is sorted directly from the Golgi to endosomes. Ferrichrome binding triggers the redistribution of Arn1 to the plasma membrane, whereas ferrichrome transport is associated with the cycling of Arn1 between the plasma membrane and endosomes. Here, we report that the clathrin adaptor Gga2 and ubiquitination by the Rsp5 ubiquitin ligase are required for trafficking of Arn1. Gga2 was required for Golgi-to-endosomal trafficking of Arn1, which was sorted from endosomes to the vacuole for degradation. Trafficking into the vacuolar lumen was dependent on ubiquitination by Rsp5, but ubiquitination was not required for plasma membrane accumulation of Arn1 in the presence of ferrichrome. Retrograde trafficking via the retromer complex or Snx4 was also not required for plasma membrane accumulation. High concentrations of ferrichrome led to higher levels of ubiquitination of Arn1, but they did not induce degradation. Without this ubiquitination, Arn1 remained on the plasma membrane, where it was active for transport. Arn1 was preferentially modified with polyubiquitin chains on a cluster of lysine residues at the amino terminus of the transporter.  相似文献   

4.
5.
6.
7.
Foam cell formation occurs in vitro at lipoprotein concentrations above 50 microgram/ml in pigeon macrophages. Hypothetically, intracellular trafficking of lipoproteins at higher concentrations may differ from uptake of lipoproteins associated with low concentrations, revealing a separate atherogenic endocytic pathway. Macrophage intracellular trafficking of pigeon beta-very low density lipoprotein (beta-VLDL) and low density lipoprotein (LDL) at low concentrations (12 microgram/ml) near the saturation of high affinity binding sites and high lipoprotein concentrations (50-150 microgram/ml) used to induce foam cell formation were examined. Pigeon beta-VLDL and LDL, differentially labeled with colloidal gold, were added simultaneously to contrast trafficking of beta-VLDL, which causes in vitro foam cell formation, with LDL, which does not. The binding of lipoproteins to cell surface structures, distribution of lipoproteins in endocytic organelles, and the extent of colabeling in the endocytic organelles were determined by thin-section transmission electron microscopy.At low concentrations, the intracellular trafficking of pigeon LDL and beta-VLDL was identical. At high concentrations, LDL was removed more rapidly from the plasma membrane and reached lysosomes more quickly than beta-VLDL. No separate endocytic route was present at high concentrations of beta-VLDL; rather, an increased residence on the plasma membrane, association with nonmicrovillar portions of the plasma membrane, and slower trafficking in organelles of coated-pit endocytosis reflected a more atherogenic trafficking pattern.  相似文献   

8.
Copper uptake at the plasma membrane and subsequent delivery to copper-dependent enzymes is essential for many cellular processes, including mitochondrial oxidative phosphorylation, free radical detoxification, pigmentation, neurotransmitter synthesis, and iron metabolism. However, intracellular levels of this nutrient must be controlled because it is potentially toxic in excess concentrations. The hCtr1 protein functions in high affinity copper uptake at the plasma membrane of human cells. In this study, we demonstrate that levels of the hCtr1 protein at the plasma membrane of HEK293 cells were reduced when cells were exposed to elevated copper. This decrease in surface hCtr1 levels was associated with an increased rate of endocytosis, and low micromolar concentrations of copper were sufficient to stimulate this process. Inhibitors of clathrin-dependent endocytosis prevented the trafficking of hCtr1 from the plasma membrane, and newly internalized hCtr1 and transferrin were co-localized. Significantly, elevated copper concentrations also resulted in the degradation of the hCtr1 protein. Our findings suggest that hCtr1-mediated copper uptake into mammalian cells is regulated by a post-translational mechanism involving copper-stimulated endocytosis and degradation of the transporter.  相似文献   

9.
10.
Iron scarcity is one of the nutrition limitations that the Gram-positive infectious pathogens Streptococcus pneumoniae encounter in the human host. To guarantee sufficient iron supply, the ATP binding cassette (ABC) transporter Pia is employed to uptake iron chelated by hydroxamate siderophore, via the membrane-anchored substrate-binding protein PiaA. The high affinity towards ferrichrome enables PiaA to capture iron at a very low concentration in the host. We presented here the crystal structures of PiaA in both apo and ferrichrome-complexed forms at 2.7 and 2.1 Å resolution, respectively. Similar to other class III substrate binding proteins, PiaA is composed of an N-terminal and a C-terminal domain bridged by an α-helix. At the inter-domain cleft, a molecule of ferrichrome is stabilized by a number of highly conserved residues. Upon ferrichrome binding, two highly flexible segments at the entrance of the cleft undergo significant conformational changes, indicating their contribution to the binding and/or release of ferrichrome. Superposition to the structure of Escherichia coli ABC transporter BtuF enabled us to define two conserved residues: Glu119 and Glu262, which were proposed to form salt bridges with two arginines of the permease subunits. Further structure-based sequence alignment revealed that the ferrichrome binding pattern is highly conserved in a series of PiaA homologs encoded by both Gram-positive and negative bacteria, which were predicted to be sensitive to albomycin, a sideromycin antibiotic derived from ferrichrome.  相似文献   

11.
12.
Synthesis of acetylcholine depends on the plasma membrane uptake of choline by a high affinity choline transporter (CHT1). Choline uptake is regulated by nerve impulses and trafficking of an intracellular pool of CHT1 to the plasma membrane may be important for this regulation. We have generated a hemagglutinin (HA) epitope tagged CHT1 to investigate the organelles involved with intracellular trafficking of this protein. Expression of CHT1-HA in HEK 293 cells establishes Na+-dependent, hemicholinium-3 sensitive high-affinity choline transport activity. Confocal microscopy reveals that CHT1-HA is found predominantly in intracellular organelles in three different cell lines. Importantly, CHT1-HA seems to be continuously cycling between the plasma membrane and endocytic organelles via a constitutive clathrin-mediated endocytic pathway. In a neuronal cell line, CHT1-HA colocalizes with the early endocytic marker green fluorescent protein (GFP)-Rab 5 and with two markers of synaptic-like vesicles, VAMP-myc and GFP-VAChT, suggesting that in cultured cells CHT1 is present mainly in organelles of endocytic origin. Subcellular fractionation and immunoisolation of organelles from rat brain indicate that CHT1 is present in synaptic vesicles. We propose that intracellular CHT1 can be recruited during stimulation to increase choline uptake in nerve terminals.  相似文献   

13.
Cytochalasin B (CB) and forskolin (FSK) inhibit GLUT1-mediated sugar transport in red cells by binding at or close to the GLUT1 endofacial sugar binding site. Paradoxically, very low concentrations of each of these inhibitors produce a modest stimulation of sugar transport [ Cloherty, E. K., Levine, K. B., and Carruthers, A. ((2001)) The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry 40 ((51)) 15549-15561]. This result is consistent with the hypothesis that the glucose transporter contains multiple, interacting, endofacial binding sites for CB and FSK. The present study tests this hypothesis directly and, by screening a library of cytochalasin and forskolin analogues, asks what structural features of endofacial site ligands determine binding site affinity and cooperativity. Like CB, FSK competitively inhibits exchange 3-O-methylglucose transport (sugar uptake in cells containing intracellular sugar) but noncompetitively inhibits sugar uptake into cells lacking sugar at 4 °C. This refutes the hypothesis that FSK binds at GLUT1 endofacial and exofacial sugar binding sites. Some forskolin derivatives and cytochalasins inhibit equilibrium [(3)H]-CB binding to red cell membranes depleted of peripheral proteins at 4 °C. Others produce a moderate stimulation of [(3)H]-CB binding when introduced at low concentrations but inhibit binding as their concentration is increased. Yet other analogues modestly stimulate [(3)H]-CB binding at all inhibitor concentrations applied. These findings are explained by a carrier that presents at least two interacting endofacial binding sites for CB or FSK. We discuss this result within the context of models for GLUT1-mediated sugar transport and GLUT1 quaternary structure, and we evaluate the major determinants of ligand binding affinity and cooperativity.  相似文献   

14.
E-cadherin-catenin complexes mediate cell-cell adhesion on the basolateral membrane of epithelial cells. The cytoplasmic tail of E-cadherin supports multiple protein interactions, including binding of beta-catenin at the C terminus and of p120ctn to the juxtamembrane domain. The temporal assembly and polarized trafficking of the complex or its individual components to the basolateral membrane are not fully understood. In Madin-Darby canine kidney cells at steady state and after treatment with cycloheximide or temperature blocks, E-cadherin and beta-catenin localized to the Golgi complex, but p120ctn was found only at the basolateral plasma membrane. We previously identified a dileucine sorting motif (Leu586-Leu587, termed S1) in the juxtamembrane domain of E-cadherin and now show that it is required to target full-length E-cadherin to the basolateral membrane. Removal of S1 resulted in missorting of E-cadherin mutants (EcadDeltaS1) to the apical membrane; beta-catenin was simultaneously missorted and appeared at the apical membrane. p120ctn was not mistargeted with EcadDeltaS1, but could be recruited to the E-cadherin-catenin complex only at the basolateral membrane. These findings help define the temporal assembly and sorting of the E-cadherin-catenin complex and show that membrane recruitment of p120ctn in polarized cells is contextual and confined to the basolateral membrane.  相似文献   

15.
Rat liver mitochondria possess a specific choline transporter in the inner membrane. The transporter shows saturable kinetics at high membrane potential with a Km of 220 microM and a Vmax of 0.4 nmol/mg of protein/min at pH 7.0 and 25 degrees C. At physiological concentrations of choline, the rate of choline uptake by the transporter shows a linear dependence on membrane potential; uptake is distinct from the nonspecific cation diffusion process. Hemicholinium-3, hemicholinium-15, quinine, and quinidine, all analogues of choline, are high affinity competitive inhibitors of choline transport with Ki values of 17, 55, 15, and 127 microM, respectively. The choline transporter is distinct from other known mitochondrial transporters. Rat heart mitochondria do not appear to possess a choline transporter. Evidence suggests that the transporter is an electrophoretic uniporter. Analogue studies have shown that the hydroxyl and the quaternary ammonium groups of choline are necessary for binding to the transporter. A comparison of molecular models of choline and the high affinity inhibitors has provided evidence for the preferred conformation of choline for binding to the transporter. The presence of a choline transporter in the mitochondrial inner membrane provides a potential site for control of choline oxidation and hence supply of endogenous betaine.  相似文献   

16.
Hresko RC  Hruz PW 《PloS one》2011,6(9):e25237
The clinical use of several first generation HIV protease inhibitors (PIs) is associated with the development of insulin resistance. Indinavir has been shown to act as a potent reversible noncompetitive inhibitor of zero-trans glucose influx via direct interaction with the insulin responsive facilitative glucose transporter GLUT4. Newer drugs within this class have differing effects on insulin sensitivity in treated patients. GLUTs are known to contain two distinct glucose-binding sites that are located on opposite sides of the lipid bilayer. To determine whether interference with the cytoplasmic glucose binding site is responsible for differential effects of PIs on glucose transport, intact intracellular membrane vesicles containing GLUT1 and GLUT4, which have an inverted transporter orientation relative to the plasma membrane, were isolated from 3T3-L1 adipocytes. The binding of biotinylated ATB-BMPA, a membrane impermeable bis-mannose containing photolabel, was determined in the presence of indinavir, ritonavir, atazanavir, tipranavir, and cytochalasin b. Zero-trans 2-deoxyglucose transport was measured in both 3T3-L1 fibroblasts and primary rat adipocytes acutely exposed to these compounds. PI inhibition of glucose transport correlated strongly with the PI inhibition of ATB-BMPA/transporter binding. At therapeutically relevant concentrations, ritonavir was not selective for GLUT4 over GLUT1. Indinavir was found to act as a competitive inhibitor of the cytoplasmic glucose binding site of GLUT4 with a K(I) of 8.2 μM. These data establish biotinylated ATB-BMPA as an effective probe to quantify accessibility of the endofacial glucose-binding site in GLUTs and reveal that the ability of PIs to block this site differs among drugs within this class. This provides mechanistic insight into the basis for the clinical variation in drug-related metabolic toxicity.  相似文献   

17.
18.
Nutrient metals such as zinc are both essential to life and potentially toxic if overaccumulated by cells. Non-essential toxic metals like cadmium can enter cells through the uptake transporters responsible for nutrient metal acquisition. Therefore, in the face of ever changing extracellular metal levels, organisms tightly control their intracellular levels of nutrient metals and prevent accumulation of toxic metals. We show here that post-translational inactivation of the yeast Zrt1 zinc uptake transporter is important for zinc homeostasis. During the transition from zinc-limiting to zinc-replete growth conditions (i.e. zinc shock), the Zrt1 transporter is ubiquitinated, endocytosed, and subsequently degraded in the vacuole. To further understand this process at a molecular level, we mapped a region of Zrt1 required for ubiquitination and endocytosis in response to zinc to a domain located on the intracellular surface of the plasma membrane. This domain is a critical cis-acting component of the metal signaling pathway that controls Zrt1 protein trafficking. Using mutant alleles defective for metal-responsive inactivation, we also show that Zrt1 inactivation may be an important mechanism for preventing cadmium uptake and toxicity in zinc-limited cells.  相似文献   

19.
Genes encoding transporters for heterologous siderophores have been identified in Saccharomyces cerevisiae, of which SIT1, TAF1, and ENB1 encode the transporters for ferrioxamines, ferric triacetylfusarinine C and ferric enterobactin, respectively. In the present communication we have shown that a further gene encoding a member of the major facilitator superfamily, ARN1 (YHL040c), is involved in the transport of a specific class of ferrichromes, possessing anhydromevalonyl residues linked to N(delta)-ornithine (ARN). Ferrirubin and ferrirhodin, which both are produced by filamentous fungi, are the most common representatives of this class of ferrichromes. A strain possessing a disruption in the ARN1 gene was unable to transport ferrirubin, ferrirhodin and also ferrichrome A, indicating that the encoded transporter recognizes anhydromevalonyl and the structurally-related methylglutaconyl side-chains surrounding the iron center. Ferrichromes possessing short-chain ornithine-N(delta)-acetyl residues such as ferrichrome, ferricrocin and ferrichrysin, were excluded by the Arn1 transporter. Substitution of the iron-surrounding N-acyl chains of ferrichromes by propionyl residues had no effect, whereas substitution by butyryl residues led to recognition by the Arn1 transporter. This would indicate that a chain length of four C-atoms is sufficient to allow binding. Using different asperchromes (B1, D1) we also found that a minimal number of two anhydromevalonyl residues is sufficient for recognition by Arn1p. Contrary to the iron-surrounding N-acyl residues, the peptide backbone of ferrichromes was not an important determinant for the Arn1 transporter.  相似文献   

20.
The neuronal glycine transporter GLYT2 controls the availability of the neurotransmitter in glycinergic synapses, and the modulation of its function may influence synaptic transmission. The active transporter is located in membrane rafts and reaches the cell surface through intracellular trafficking. In the present study we prove that GLYT2 constitutively recycles between the cell interior and the plasma membrane by means of a monensin-sensitive trafficking pathway. Also, a regulated trafficking can be triggered by PMA. We demonstrate that PMA inhibits GLYT2 transport by causing net accumulation of the protein in internal compartments through an increase of the internalization rate. In addition, a small increase of plasma membrane delivery and a redistribution of the transporter to non-raft domains is triggered by PMA. A previously identified phorbol-ester-resistant mutant (K422E) displaying an acidic substitution in a regulatory site, exhibits constitutive traffic but, in contrast with the wild-type, fails to show glycine uptake inhibition, membrane raft redistribution and trafficking modulation by PMA. We prove that the action of PMA on GLYT2 involves PKC (protein kinase C)-dependent and -independent pathways, although an important fraction of the effects are PKC-mediated. We show the additional participation of signalling pathways triggered by the small GTPase Rac1 on PMA action. GLYT2 inhibition by PMA and monensin also take place in brainstem primary neurons and synaptosomes, pointing to a GLYT2 trafficking regulation in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号