首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The bacterial strain Pseudomonas sp. BA2 did not develop l-aminoacylase activity in the absence of N-acetyl-dl-alanine. The maximum growth rate and enzyme production were obtained when the acetylated amino acid was used as the sole carbon and nitrogen source. A maximum biomass of A660=1.543, after 24 h of cultivation, was obtained. The l-aminoacylase activity reached the maximum value (5.6 U ml–1 broth) in the stationary growth phase.  相似文献   

2.
l-2-Amino-Δ2-thiazoline-4-carboxylic acid hydrolase (ATC hydrolase) was purified and characterized from the crude extract of Escherichia coli, in which the gene for ATC hydrolase of Pseudomonas sp. strain ON-4a was expressed. The results of SDS–polyacrylamide gel electrophoresis and gel filtration on Sephacryl S-200 suggested that the ATC hydrolase was a tetrameric enzyme consisted of identical 25-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 7.0 and 30–35°C, respectively. The enzyme did not require divalent cations for the expression of the activity, and Cu2+ and Mn2+ ions strongly inhibited the enzyme activity. An inhibition experiment by diethylpyrocarbonic acid, 2-hydroxy-5-nitrobenzyl bromide, and N-bromosuccinimide suggested that tryptophan, cysteine, or/and histidine residues may be involved in the catalytic site of this enzyme. The enzyme was strictly specific for the l-form of d,l-ATC and exhibited high activity for the hydrolysis of l-ATC with the values of K m (0.35 mM) and V max (69.0 U/mg protein). This enzyme could not cleave the ring structure of derivatives of thiazole, thiazoline, and thiazolidine tested, except for d,l- and l-ATC. These results show that the ATC hydrolase is a novel enzyme cleaving the carbon–sulfur bond in a ring structure of l-ATC to produce N-carbamoyl-l-cysteine.  相似文献   

3.
N-carbamoyl-l-cysteine amidohydrolase (NCC amidohydrolase) was purified and characterized from the crude extract of Escherichia coli in which the gene for NCC amidohydrolase of Pseudomonas sp. strain ON-4a was expressed. The enzyme was purified 58-fold to homogeneity with a yield of 16.1% by three steps of column chromatography. The results of gel filtration on Sephacryl S-300 and SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a tetramer protein of identical 45-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 9.0 and 50°C, respectively. The enzyme required Mn2+ ion for activity expression and was inhibited by EDTA, Hg2+ and sulfhydryl reagents. The enzyme was strictly specific for the l-form of N-carbamoyl-amino acids as substrates and exhibited high activity in the hydrolysis of N-carbamoyl-l-cysteine as substrate. These results suggested that the NCC amidohydrolase is a novel l-carbamoylase, different from the known l-carbamoylases.  相似文献   

4.
Among the numerous virulance factors produced byPseudomonas aeruginosa, elastase is the one most often associated with pathogenesis. In this study, effects of various metal ions on elastase from a new isolate ofP. aeruginosa (Strain SES-938-1) was investigated. Crude elastase was prepared from culture supernatant via salting out by ammonium sulfate, and then desalting and concentrating the sample using a centricon microconcentrator. Activities were measured at 450 nm usingN-succinyl-l-(ala)3-p-nitroanilide as the substrate. The metal chelating agents EDTA and EGTA inhibited thePseudomonas elastase, which shows that the enzyme is a typical metalloproteinase. At a 10-mM concentration, Mn2+, Ni2+, and Zn2+ strongly inhibited the elastase, whereas Mg2+ effect was negligable. There was a gradual decrease in the enzyme activity in accordance with an increase in the concentration of metal ions.  相似文献   

5.
Using a 30-mer oligonucleotide probe highly specific for polyhydroxyalkanoic acid (PHA) synthase genes, the respective genes of Pseudomonas citronellolis, P. mendocina, Pseudomonas sp. DSM 1650 and Pseudomonas sp. GP4BH1 were cloned from genomic libraries in the cosmid pHC79. A 19.5-kbp and a 22.0-kbp EcoRI restriction fragment of P. citronellolis or Pseudomonas sp. DSM 1650, respectively, conferred the ability to accumulate PHA of medium-chain-length 3-hydroxyalkanoic acids (HA mcl ) from octanoate as well as from gluconate to the PHA-negative mutant P. putida GPp104. An 11.0-kbp EcoRI fragment was cloned from P. mendocina, which restored in GPp104 the ability to synthesize PHA from octanoate but not from gluconate. From Pseudomonas sp. GP4BH1 three different genomic fragments encoding PHA synthases were cloned. This indicated that strain GP4BH1 possesses three different functionally active PHA synthases. Two of these fragments (6.4 kbp and 3.8 kbp) encoded for a PHA synthase, preferentially incorporating hydroxyalkanoic acids of short chain length (HA scl ), and the synthases were expressed in either GPp104 and Alcaligenes eutrophus H16-PHB4, respectively. The PHA synthase encoded by the third fragment (6.5 kbp) led to the incorporation of HA mcl and was expressed in GPp104 but not in PHB4. Correspondence to: A. Steinbüchel  相似文献   

6.
A recombinant putative glycoside hydrolase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 12 U mg−1 by heat treatment and His-Trap affinity chromatography, and identified as a single 56 kDa band upon SDS-PAGE. The native enzyme is a dimer with a molecular mass of 112 kDa as determined by gel filtration. The enzyme exhibited its highest activity when debranched arabinan (1,5-α-l-arabinan) was used as the substrate, demonstrating that the enzyme was an endo-1,5-α-l-arabinanase. The K m, k cat, and k cat/K m values were 18 mg ml−1, 50 s−1, and a 2.8 mg ml−1 s−1, respectively. Maximum enzyme activity was at pH 6.5 and 75°C. The half-lives of the enzyme at 65, 70 and 75°C were 2440, 254 and 93 h, respectively, indicating that it is the most thermostable of the known endo-1,5-α-l-arabinanases.  相似文献   

7.
An l-asparaginase produced by Pseudomonas stutzeri MB-405 was isolated and characterized. After initial ammonium sulfate fractionation, the enzyme was purified by consecutive column chromatography on Sephadex G-100, Ca-hydroxylapatite, and DEAE-Sephadex A-50. The 665.5-fold purified enzyme thus obtained has the specific activity of 732.3 units mg protein-1 with an overall recovery of 27.2%. The apparent M r of the enzyme under nondenaturing and denaturing conditions was 34 kDa and 33 kDa respectively, and the isoelectric point was 6.38±0.02. It displayed optimum activity at pH 9.0 and 37°C. The enzyme was very specific for l-asparagine and did not hydrolyze L-glutaminate. The K m of the l-asparaginase was found to be 1.45×10-4 m towards l-asparagine and was competitively inhibited by 5-diazo-4-oxo-l-norvaline (DONV) with a K i of 0.03mm. Metal ions such as Mn2+, Zn2+, Hg2+, Fe3+, Ni2+, and Cd2+ potentially inhibited the enzyme activity. The activity was enhanced in the presence of thiol-protecting reagents such as DTT, 2-ME, and glutathione (reduced), but inhibited by PCMB and iodoacetamide. The tumor inhibition study with Dalton's lymphoma tumor cells in vivo indicated that this enzyme possesses antitumor properties.  相似文献   

8.
Dihydroorotase was purified to homogeneity fromPseudomonas putida. The relative molecular mass of the native enzyme was 82 kDa and the enzyme consisted of two identical subunits with a relative molecular mass of 41 kDa. The enzyme only hydrolyzed dihydro-l-orotate and its methyl ester, and the reactions were reversible. The apparentK m andV max values for dihydro-l-orotate hydrolysis (at pH 7.4) were 0.081 mM and 18 μmol min−1 mg−1, respectively; and those forN-carbamoyl-dl-aspartate (at pH 6.0) were 2.2 mM and 68 μmol min−1 mg−1, respectively. The enzyme was inhibited by metal ion chelators and activated by Zn2+. However, excessive Zn2+ was inhibitory. The enzyme was inhibited by sulfhydryl reagents, and competitively inhibited byN-carbamoylamino acids such asN-carbamoylglycine, with aK i value of 2.7 mM. The enzyme was also inhibited noncompetitively by pyrimidine-metabolism intermediates such as dihydrouracil and orotate, with aK i value of 3.4 and 0.75 mM, respectively, suggesting that the enzyme activity is regulated by pyrimidine-metabolism intermediates and that dihydroorotase plays a role in the control of pyrimidine biosynthesis.  相似文献   

9.
Brevundimonas diminuta TPU 5720 produces an amidase acting l-stereoselectively on phenylalaninamide. The enzyme (LaaABd) was purified to electrophoretic homogeneity by ammonium sulfate fractionation and four steps of column chromatography. The final preparation gave a single band on SDS-PAGE with a molecular weight of ≈53,000. The native molecular weight of the enzyme was about 288,000 based on gel filtration chromatography, suggesting that the enzyme is active as a homohexamer. It had maximal activity at 50°C and pH 7.5. LaaABd lost its activity almost completely on dialysis against potassium phosphate buffer (pH 7.0), and the amidase activity was largely restored by the addition of Co2+ ions. The enzyme was, however, inactivated in the presence of ethylenediaminetetraacetic acid even in the presence of Co2+, suggesting that LaaABd is a Co2+-dependent enzyme. LaaABd had hydrolyzing activity toward a broad range of l-amino acid amides including l-phenylalaninamide, l-glutaminamide, l-leucinamide, l-methioninamide, l-argininamide, and l-2-aminobutyric acid amide. Using information on the N-terminal amino acid sequence of the enzyme, the gene encoding LaaABd was cloned from the chromosomal DNA of the strain and sequenced. Analysis of 4,446 bp of the cloned DNA revealed the presence of seven open-reading frames (ORFs), one of which (laaA Bd ) encodes the amidase. LaaABd is composed of 491 amino acid residues (calculated molecular weight 51,127), and the deduced amino acid sequence exhibits significant similarity to that of ORFs encoding hypothetical cytosol aminopeptidases found in the genomes of Caulobacter crescentus, Bradyrhizobium japonicum, Rhodopseudomonas palustris, Mesorhizobium loti, and Agrobacterium tumefaciens, and leucine aminopeptidases, PepA, from Rickettsia prowazekii, Pseudomonas putida ATCC 12633, and Escherichia coli K-12. The laaA Bd gene modified in the nucleotide sequence upstream from its start codon was overexpressed in an E. coli transformant. The activity of the recombinant LaaABd in cell-free extracts of the E. coli transformant was 25.9 units mg−1 with l-phenylalaninamide as substrate, which was 50 times higher than that of B. diminuta TPU 5720.  相似文献   

10.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

11.
About 1000 bacterial colonies isolated from sea water were screened for their ability to convert dl-5-phenylhydantoin to d(−)N-carbamoylphenylglycine as a criterion for the determination of hydantoinase activity. The strain M-1, out of 11 hydantoinase-producing strains, exhibited the maximum ability to convert dl-5-phenylhydantoin to d(−)N-carbamoylphenylglycine. The strain M-1 appeared to be a halophilic Pseudomonas sp. according to morphological and physiological characteristics. Optimization of the growth parameters revealed that nutrient broth with 2% NaCl was the preferred medium for both biomass and enzyme production. d-Hydantoinase of strain M-1 was not found to be inducible by the addition of uracil, dihydrouracil, β-alanine etc. The optimum temperature for enzyme production was about 25 °C and the organism showed a broad pH optimum (pH 6.5–9.0) for both biomass and hydantoinase production. The organism seems to have a strict requirement of NaCl for both growth and enzyme production. The optimum pH and temperature of enzyme activity were 9–9.5 and 30 °C respectively. The biotransformation under the alkaline conditions allowed the conversion of 80 g l−1 dl-5-phenylhydantoin to 82 g l−1 d(−)N-carbamoylphenylglycine within 24 h with a molar yield of 93%. Received: 15 September 1997 / Received revision: 5 January 1998 / Accepted: 6 January 1998  相似文献   

12.
A protease-producing bacterium was isolated from an alkaline wastewater of the soap industry and identified as Vibrio metschnikovii J1 on the basis of the 16S rRNA gene sequencing and biochemical properties. The strain was found to over-produce proteases when it was grown at 30°C in media containing casein as carbon source (14,000 U ml−1). J1 enzyme, the major protease produced by V. metschnikovii J1, was purified by a three-step procedure, with a 2.1-fold increase in specific activity and 33.3% recovery. The molecular weight of the purified protease was estimated to be 30 kDa by SDS-PAGE and gel filtration. The N-terminal amino acid sequence of the first 20 amino acids of the purified J1 protease was AQQTPYGIRMVQADQLSDVY. The enzyme was highly active over a wide range of pH from 9.0 to 12.0, with an optimum at pH 11.0. The optimum temperature for the purified enzyme was 60°C. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The kinetic constants K m and K cat of the purified enzyme using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide were 0.158 mM and 1.14 × 105 min−1, respectively. The catalytic efficiency (K cat /K m) was 7.23 × 108 min−1 M−1. The enzyme showed extreme stability toward non-ionic surfactants and oxidizing agents. In addition, it showed high stability and compatibility with some commercial liquid and solid detergents. The aprJ1 gene, which encodes the alkaline protease from V. metschnikovii J1, was isolated, and its DNA sequence was determined. The deduced amino acid sequence of the preproenzyme differs from that of V. metschnikovii RH530 detergent-stable protease by 12 amino acids, 7 located in the propeptide and 5 in the mature enzyme.  相似文献   

13.
Penicillium ulaiense is a post-harvest pathogenic fungus that attacks citrus fruits. The objective of this work was to study this microorganism as an α-l-rhamnosidase producer and to characterize it from P. ulaiense. The enzyme under study is used for different applications in food and beverage industries. α-l-Rhamnosidase was produced in a stirred-batch reactor using rhamnose as the main carbon source. The kinetic parameters for the growth of the fungi and for the enzyme production were calculated from the experimental values. A method for partial purification, including (NH4)2SO4 precipitation, incubation at pH 12 and DEAE-sepharose chromatography yielded an enzyme with very low β-glucosidase activity. The pH and temperature optima were 5.0 and 60°C, respectively. The Michaelis–Menten constants for the hydrolysis of p-nitrophenyl-α-l-rhamnoside were V max = 26 ± 4 IU ml−1 and K m  = 11 ± 2 mM. The enzyme showed good thermostability up to 60°C and good operational stability in white wine. Co2+ affected positively the activity; EDTA, Mn2+, Mg2+, dithiotreitol and Cu2+ reduced the activity by different amounts, and Hg2+ completely inhibited the enzyme. The enzyme showed more activity on p-nitrophenyl-α-l-rhamnoside than on naringin. According to these results, this enzyme has potential for use in the food and pharmacy industries since P. ulaiense does not produce mycotoxins.  相似文献   

14.
Bacteria that produced NAD+-dependent phenylalanine dehydrogenase (EC 1.4.1.20) were selected among l-methionine utilizers isolated from soil. A bacterial strain showing phenylalanine dehydrogenase activity was chosen and classified in the genus Microbacterium. Phenylalanine dehydrogenase was purified from the crude extract of Microbacterium sp. strain DM 86-1 (TPU 3592) to homogeneity as judged by SDS-polyacrylamide disc gel electrophoresis. The enzyme has an isoelectric point of 5.8 and a relative molecular weight (M r) of approximately 330,000. The enzyme is composed of eight identical subunits with an M r of approximately 41,000. The apparent K m values for l-phenylalanine and NAD+ were calculated to be 0.10 mM and 0.20 mM, respectively. No loss of the enzyme activity was observed upon incubation at 55° C for 10 min. Received: 30 July 1997 / Accepted: 4 November 1997  相似文献   

15.
Summary The effects of lanthanum on the activity of purified preparations of acetylcholinesterase (AChE) from the electric organ ofE. electricus and on the activity of AChE in intact electro-plaques from the same species were studied. 0.1mm LaCl3 produced an initial inhibition of purified AChE which was followed by a delayed activation of the enzyme. Upon pretreatment of purified enzyme with LaCl3, initial activity was markedly increased. LaCl3 exerted a marked, concentration-dependent inhibition of intact cell AChE.La3+ and Ca2+ appear to interact competitively. In the presence of both 10mm CaCl2 and 0.1mm LaCl3, the initial activity of purified AChE was increased at lower ACh concentrations and inhibited at ACh concentrations greater than 3 × 10–4 m. Inhibition of intact cell enzyme by 0.1mm LaCl3 was relieved by increasing the CaCl2 concentration to 10mm at ACh concentrations less than 2 × 10–4 m.The data were analyzed assuming Michaelis-Menten kinetics and interpreted with reference to the differential binding of divalent and trivalent cations to regulatory anionic sites which are separate and distinct from the anionic site of the active center of the enzyme.  相似文献   

16.
Thermostable N-acylamino acid recemase from Amycolatopsis sp. TS-1-60, a rare actinomycete strain selected for its ability to grow on agar plates incubated at 40° C, was purified to homogeneity and characterized. The relative molecular mass (M r) of the native enzyme and the subunit was estimated to be 300 000 and 40 000 on gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis respectively. The isoelectric point (pI) of the enzyme was 4.2. The optimum temperature and pH were 50° C and 7.5 respectively. The enzyme was stable at 55° C for 30 min. The enzyme catalyzed the racemization of optically active N-acylamino acids such as N-acetyl-l-or d-methionine, N-acetyl-l-valine, N-acetyl-l-tyrosine and N-chloroacetyl-l-valine. In addition, the enzyme also catalyzed the recemization of the dipeptide l-alanyl-l-methionine. By contrast, the optically active amino acids, N-alkyl-amino acids and methyl and athyl ester derivatives of N-acetyl-d- and l-methionine were not racemized. The apparent K m values for N-acetyl-l-methionine and N-acetyl-d-methionine were calculated to be 18.5 mM and 11.3 mM respectively. The enzyme activity was markedly enhanced by the addition of divalent metal ions such as Co2+, Mn2+ and Fe2+ and was inhibited by addition of EDTA and P-chloromercuribenzoic acid. The similarity between the NH2-terminal amino acid sequence of the enzyme and that of Streptomyces atratus Y-53 [Tokuyama et al. (1994) Appl Microbiol Biotechnol 40:835–840] was above 80%.  相似文献   

17.
In cell extracts of Rhodopseudomonas sphaeroides grown on meso-tartrate the activities of the bifunctional L(+)-tartrate dehydrogenase-D(+)-malate dehydrogenase (decarboxylating) (EC 1.1.1.93 and 1.1.1.83, respectively) could be measured spectrophotometrically but not the activity of a meso-tartrate dehydrogenase or dehydratase. However, an enzyme activity was detected manometrically that catalyzed the stoichiometric release of CO2 from mesotartrate in a molar ratio of 1:1. This reaction required catalytic amounts of NAD and the presence of both divalent (Mn2+ or Mg2+) and monovalent (NH 4 + or K+) cations. Purification of the meso-tartrate decarboxylase showed that it was part of the bifunctional L(+)-tartrate dehydrogenase-D(+)-malate dehydrogenase (decarboxylating), which thus possessed a third catalytic function. The homogeneous enzyme catalyzed the stoichiometric conversion of incso-tartaric acid to D(-)-glyceric acid and CO2. All interfering catalytic activities had been eliminated during the course of enzyme purification.  相似文献   

18.
Summary Glucose-6-phosphate dehydrogenase activity in cell free extracts o Zymomonas mobilis showed marked differences when compared with the corresponding enzyme of Escherichia coli. It exhibited 3 times higher activity and the reaction rate over 10 min gave linearity only up to a cell free protein concentration of 0.15 mg protein. This different behaviour was not a function of environmental growth conditions of the culture nor of the nine different assay methods employed. A constant relationship existed between the specific G-6-P dehydrogenase protein and the total protein concentration in the cell free extract. The enzyme was stable for at least 5 h at 4°C in Tris-NaCl-MgCl2-buffer.An investigation of the properties of G-6-P dehydrogenase from Z. mobilis revealed a pH optimum of 8.7 with a rapid decline towards the acidic and a small decrease towards the alkaline side. The K m values were 5×10-4 m for glucose-6-phosphate and 3.6×10-5 m NADP+. The addition of 1×10-2 m MgCl2 produced optimal activity but higher concentrations inhibited the enzyme reaction.These results were discussed with those from other sources and found to be unique for Zymomonas mobilis.Meinem hochverehrten Lehrer Herrn Professor A. Rippel zum 80. Geburtstage.  相似文献   

19.
Choi JG  Hong SH  Kim YS  Kim KR  Oh DK 《Biotechnology letters》2012,34(6):1079-1085
A putative d-lyxose isomerase from Dictyoglomus turgidum was purified with a specific activity of 19 U/mg for d-lyxose isomerization by heat treatment and affinity chromatography. The native enzyme was estimated as a 42 kDa dimer by gel-filtration chromatography. The activity of the enzyme was highest for d-lyxose, suggesting that it is a d-lyxose isomerase. The maximum activity of the enzyme was at pH 7.5 and 75°C in the presence of 0.5 mM Co2+, with a half-life of 108 min, K m of 39 mM, and k cat of 3,570 1/min. The enzyme is the most thermostable d-lyxose isomerase among those characterized to date. It converted 500 g d-xylulose/l to 380 g d-lyxose/l after 2 h. This is the highest concentration and productivity of d-lyxose reported thus far.  相似文献   

20.
Helicobacter pylori is a microaerophilic bacterium, associated with gastric inflammation and peptic ulcers. d-Amino acid dehydrogenase is a flavoenzyme that digests free neutral d-amino acids yielding corresponding 2-oxo acids and hydrogen. We sequenced the H. pylori NCTC 11637 d-amino acid dehydrogenase gene, dadA. The primary structure deduced from the gene showed low similarity with other bacterial d-amino acid dehydrogenases. We purified the enzyme to homogeneity from recombinant Escherichia coli cells by cloning dadA. The recombinant protein, DadA, with 44 kDa molecular mass, possessed FAD as cofactor, and showed the highest activity to d-proline. The enzyme mediated electron transport from d-proline to coenzyme Q1, thus distinguishing it from d-amino acid oxidase. The apparent K m and V max values were 40.2 mM and 25.0 μmol min−1 mg−1, respectively, for dehydrogenation of d-proline, and were 8.2 μM and 12.3 μmol min−1 mg−1, respectively, for reduction of Q1. The respective pH and temperature optima were 8.0 and 37°C. Enzyme activity was inhibited markedly by benzoate, and moderately by SH reagents. DadA showed more similarity with mammalian d-amino acid oxidase than other bacterial d-amino acid dehydrogenases in some enzymatic characteristics. Electron transport from d-proline to a c-type cytochrome was suggested spectrophotometrically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号