首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation.  相似文献   

2.
The relative water content (RWC), free proline levels and the activities of enzymes involved in proline metabolism were studied in drought tolerant (Ca/H 680) and drought sensitive (Ca/H 148) genotypes of cotton (Gossypium hirsutum L.) during induction of water stress and posterior recovery. Water stress caused a significant increase in proline levels and P5CS activity in leaves of both tolerant and sensitive genotypes, whereas the activity of P5CR increased minimally and the activity of OAT remains unchanged. The activity of PDH decreased under drought stress in both the genotypes. The leaf of tolerant genotype maintained higher RWC, photosynthetic activity and proline levels, as well as higher P5CS and P5CR activities under water stress than that of drought sensitive genotype. The drought induced proline levels and activities of P5CS and P5CR declined and tend to be equal to their respective controls, during recovery, whereas the PDH activity tends to increase. These results indicate that induction of proline levels by up regulation of P5CS and down regulation of PDH may be involved in the development of drought tolerance in cotton.  相似文献   

3.
4.
5.
Germination/growth of wheat (Triticum aestivum L., cv. Zimai 1) seeds and changes in the levels of proline and protein as well as in activities of key enzymes involved in proline metabolism in response to salinity-, heat-stresses and their cross-stress were studied. With decreasing water potential caused by increasing concentrations of NaCl, germination percentage, fresh weight of seedlings and protein amount markedly decreased, whereas proline amount slightly increased. The activities of pyrroline-5-carboxylate synthetase (P5CS), ornithine aminotransferase (OAT), and proline dehydrogenase (PDH) peaked at ?0.2 MPa water potential. Germination percentage and amounts of proline and protein increased as germination temperature elevated to 25°C from 15°C, and decreased above 25°C; fresh weight of seedlings increased to 30°C from 15°C, and decreased above 30°C. However, the activities of P5CS, OAT and PDH gradually decreased with elevaing temperature. Seeds pretreated at 33°C or in ?0.8 MPa NaCl solution for various time length increased tolerance to subsequent salt + water stress or heat stress, as measured by germination percentage and fresh weight of seedlings 5 days after beginning of experiment. The acquisition of cross-tolerance resulting in limitation of negative stress effects does not relate directly to proline level and activities of P5CS, OAT and PDH involved in proline metabolism. Proline amount as measured four days or later after stress imposition cannot be considered a symptom of salt-, water- and heat-stress injury or an indicator of the resistance.  相似文献   

6.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

7.
8.

Lettuce (Lactuca sativa L.) prefers cool environments, and high temperatures affect its yield and quality. Polyamines (PAs) have a mitigating effect on plant abiotic stresses. The effect of exogenous spermidine (Spd) on the osmoregulatory substances and stomata of seedlings of the non-heat-tolerant lettuce variety ‘Bei San 3’ under high temperature stress was investigated at 35 °C/30 °C (day/night) under spray treatment with Spd. The results showed that exogenous Spd increased the total fresh weight, root-to-shoot ratio, leaf length, leaf width, root volume, and root surface area of lettuce under high temperature stress and reduced levels of malondialdehyde. The endogenous polyamine content was changed, and endogenous spermidine (Spd) and putrescine (Put) were increased. The accumulation of six organic osmoregulatory substances was promoted, resulting in enhanced betaine aldehyde dehydrogenase (BADH), choline monooxygenase (CMO), proline catalase pyrroline-5-carboxylate synthase (P5CS), ornithine aminotransferase (OAT), and pyrroline-5-carboxylate reductase (P5CR) activity. The production and activity of the degrading enzymes proline dehydrogenase (PDH) and proline oxidase (POX) were inhibited, and the activity of glutamic acid decarboxylase (GAD), the key enzyme of γ-aminobutyric (GABA), was suppressed. In addition, exogenous Spd increased the contents of Ca, K, Fe, Mn, Zn, and NO3? ions in lettuce leaves under high temperature stress, promoted K+ efflux and Ca2+ influx, and reduced the relative stomatal aperture. In summary, exogenous Spd mitigates lettuce injury caused by high temperature stress by increasing the content of osmoregulatory substances and altering stomatal morphology.

  相似文献   

9.
The role of gene of proline dehydrogenase (PDH) in the maintenance of stress tolerance was investigated using the model transgenic plants of tobacco (Nicotiana tabacum L.) carrying an antisense suppressor of PDH gene (a fragment of Arabidopsis PDH gene under the control of cauliflower mosaic virus 35S promoter in antisense orientation) and notable for a low activity of PDH and elevated content of proline. The progeny of transgenic plants belonging to the 5th generation (T5) with partially suppressed PDH activity was more resistant to various types of stress as compared with the control plants of tobacco, cv. Petit Havana SR-1 (SR1). The seedlings of transgenic lines cultured in Petri dishes on agar media supplemented with stress agents were resistant to high NaCl concentrations (200–300 mM) and water deficit simulated by an increased agar content in the medium (14 g/l) as compared to the control seedlings of cv. SR1. Juvenile plants of transgenic lines grown in pots filled with a mixture of vermiculite and perlite also manifested the higher resistance to water deficit and low temperatures (2°C and −2°C) than the control plants. Thus, the partial PDH suppression correlated with an increase in nonspecific resistance to different types of abiotic stress: salinity, water deficit, and low temperatures. Such transgenic lines of tobacco are promising genetic models for thorough investigation of molecular mechanisms of stress resistance in plants.  相似文献   

10.
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.  相似文献   

11.
The response of w-1, a wilty sunflower (Helianthus annuus L.)mutant, to water stress is described in comparison with thecontrol line (W-1). Detached leaves of w-1 strongly dehydratedduring the first 30 min without significant changes in leafconductance, whereas W-1 responded rapidly to water loss byreducing stomatal aperture. After 2 h stress ABA increased slightlyin w-1, while W-1 leaves showed a 20-fold increase. When waterstress was imposed to potted plants by water withholding, w-1quickly dehydrated, and lost turgor, while W-1 maintained positiveturgor values for a longer period. Wild-type plants respondedto small changes in leaf water potential by accumulating ABAand by closing stomata, whereas in the mutant significant changesin ABA content and in stomatal conductance were found only atvery low water potentials. In another experiment in which waterwas withheld under high relative humidity, when soil water contentstarted to decrease W-1 rapidly closed stomata in the absenceof any change in leaf water status and the reduction in conductancewas paralleled by a rise in xylem sap ABA concentration. Bycontrast the mutant started to accumulate ABA in the xylem sapand to close stomata when soil water content and leaf waterpotential were dramatically reduced. The low endogenous ABAlevels and the inability to synthesize the hormone rapidly eitherin the leaves or in the roots seem to be responsible for thehigh sensitivity of w-1 to water stress. Key words: ABA, Helianthus annuus L, water relations, stomatal conductance, drought, wilty mutant  相似文献   

12.
The Measurement of Stomatal Responses to Stimuli in Leaves and Leaf Discs   总被引:4,自引:0,他引:4  
A comparison has been made of stomatal responses in intact leaves,leaf discs supplied with water via their cut edges and leafdiscs floating on water. Xanthium pennsylvanicum leaf discswatered via their cut edges appeared to be more turgid thanintact leaves; this considerably slowed down the rate of stomatalopening but it slightly increased the final steady-state stomatalopening. When the water potential of such leaf discs was loweredby pre-treatment with mannitol solutions rates of stomatal openingincreased whereas maximum steady-state openings decreased. In tobacco leaf discs floating on water the stomata in contactwith water were wider open than those in contact with normalair and they did not respond to treatment with carbon dioxide-freeair. The rate of photosynthesis was severely reduced in tobaccoleaf discs floating with the lower epidermis on water, mostprobably owing to the slow rate of diffusion of carbon dioxidein water. By floating such discs on osmotica the degree of stomatalopening was increased, however, a response to treatment withcarbon dioxide-free air was still not measurable. It is postulatedthat, on account of the relative unavailability of carbon dioxidefrom the water, the carbon dioxide concentration in the substomatalcavities of the lower surface is abnormally low, irrespectiveof whether ordinary air or carbon dioxide-free air is availableto the upper surface. A comparison between porometer readings and measurements ofsiliconerubber impressions of stomatal pores taken from insidethe porometer cup confirmed that the silicone-rubber impressionmethod of assessing stomatal responses to stimuli has severelimitations, especially at small stomatal apertures.  相似文献   

13.
渗透调节参与循环干旱锻炼提高烟草植株抗旱性的形成   总被引:1,自引:0,他引:1  
对漂浮育苗的烟草幼苗进行控水一半萎焉.复水一恢复的循环干旱锻炼。结果表明,这种干旱锻炼能显著提高烟草幼苗根、茎、叶中的渗透调节物质可溶性糖和脯氨酸的含量,降低细胞渗透势。当干旱锻炼过的烟草植株遭受后续的干旱胁迫时,与未锻炼的对照相比,其根、茎、叶能积累更多的可溶性糖和脯氨酸,从而降低了细胞渗透势,使叶片能维持较高的膨压。这些结果表明渗透调节参与了循环干旱锻炼提高的烟草植株抗旱性的形成过程。此外,干旱锻炼提高了烟草幼苗的根/冠比。循环干旱锻炼过程中烟草植株一方面使其各部位通过渗透调节来对干旱环境进行生理适应,另一方面通过调节光合产物在地上部和地下部的分配以影响根/冠比来对干旱环境进行形态适应,以最终提高其抗旱性。  相似文献   

14.
Proline is synthesized either from glutamate or from ornithine in plants. Relatively little is known about the contribution of the pathway from ornithine to proline biosynthesis. In this paper we investigated the contribution of ornithine--aminotransterase (OAT), an enzyme responsible for ornithine pathway, to proline accumulation in water-stressed detached rice leaves. Although OAT activity increased with the increase of water stress duration, a pattern similar to that obtained for proline accumulation, the ornithine pathway in rice leaves seems to contribute little, if any, to proline accumulation under water stress condition. This conclusion was based on the observations that (a) gabaculine (50 M), an inhibitor of OAT, inhibited about 75% OAT activity caused by water stress but reduced only 20% of proline content and (b) cycloheximide, a protein synthesis inhibitor, had no effect on OAT activity induced by water stress but significantly reduced proline accumulation.  相似文献   

15.
Percentage germination, and growth of hyphae from single conidia of Erysiphe cichoracearum DC., were measured on leaf discs from topped and intact tobacco plants, grown in aerated nutrient solutions consisting of basal medium plus large or small amounts of potassium. The effect of supplying sodium was also studied. Discs were incubated on water and on 10% sucrose solution. Changes in free amino nitrogen and carbohydrate in comparable uninfected leaf discs, before and after incubation, were also measured. Potassium deficiency resulted in more free amino nitrogen and soluble carbohydrate and less insoluble carbohydrate, per cm.2 of leaf. Spore germination was not greatly affected by treatments, though it was usually less on discs from potassium-deficient leaves. The pathogen grew slower on potassium-deficient leaf discs, whether they were incubated on water or on sucrose. Incubating discs from some leaves on sucrose, compared with water, gave greatly increased sugar content and less fungal growth; discs from other leaves had a much smaller increase in sugar, and hyphal length was similar to that on discs incubated on water. Sodium, when potassium was scarce, increased potassium deficiency symptoms, free amino nitrogen and sugar content, and resistance to powdery mildew.  相似文献   

16.
Senescence and reserve mobilization are integral components of plant development, are basic strategles in stress mitigation, and regulated at least in part by cytokinin. In the present study the effect of altered cytokinin metabolism caused by senescence-specific autoregulated expression of the Agrobacterium tumefaciens IPT gene under control of the PSAG12 promoter (PSAG12-IPT) on seed germination and the response to a water-deficit stress was studied in tobacco (Nicotiana tabacum L.). Cytokinin levels, sugar content and composition of the leaf strata within the canopy of wild-type and PSAG12-IPT plants confirmed the reported altered source–sink relations. No measurable difference in sugar and pigment content of discs harvested from apical and basal leaves was evident 72 h after incubation with (+)-ABA or in darkness, indicating that expression of the transgene was not restricted to senescing leaves. No difference in quantum efficiency, photosynthetic activity, accumulation of ABA, and stomatal conductance was apparent in apical, middle and basal leaves of either wild-type or PSAG12-IPT plants after imposition of a mild water stress. However, compared to wild-type plants, PSAG12-IPT plants were slower to adjust biomass allocation. A stress-induced increase in root:shoot ratio and specific leaf area (SLA) occurred more rapidly in wild-type than in PSAG12-IPT plants reflecting delayed remobilization of leaf reserves to sink organs in the transformant. PSAG12-IPT seeds germinated more slowly even though abscisic acid (ABA) content was 50% that of the wild-type seeds confirming cytokinin-induced alterations in reserve remobilization. Thus, senescence is integral to plant growth and development and an increased endogenous cytokinin content impacts source–sink relations to delay ontogenic transitions wherein senescence in a necessary process.  相似文献   

17.
The effects of increase copper concentrations in medium (10–150 μM CuSO4) on growth and viability of the roots of two-week-old soybean seedlings (Glycine max L., cv. Dorintsa) were studied. Copper excess suppressed biomass accumulation and linear plant growth; copper affected root growth much stronger than shoot growth. The presence of 10 μM CuSO4 in medium suppressed accumulation of plant biomass by 40% and the root length by 70%; in the presence of 25 μM CuSO4, these indices were equal to 80 and 90%, respectively. In the presence of 50 μM CuSO4, roots ceased to grow but biomass and shoot length still increased slightly. 150 μM CuSO4 was lethal for plants. The earliest sign of excessive copper toxicity was the accumulation of MDA, indicating activation of membrane lipid peroxidation. A significant increase in MDA content was observed at plant incubation in medium with 10 μM CuSO4 for 1 h; in this case, the content of copper in the roots increased from 36 ±1.8 (in control) to 48 ± 2.4 μg/g dry wt. The number of dead cells (permeable for the dye Evans Blue) was doubled in the presence of 200 μg/g dry wt within the root; this occurred in 72 h of growth in medium with 10 μM CuSO4, in 6 h at 25 μM CuSO4, in 3 h at 50 μM CuSO4, and 1 h at 150 μM CuSO4. Toxicity of copper excess was manifested stronger in dividing and elongation cells of the root apex (root meristem and the zone of elongation) than in more basal root regions. Copper excess resulted in the formation of breaks in the surface cell layers of the root tips and affect root morphology. When plant grew in medium with 10 μM CuSO4, a distance of lateral root formation zone from the root tip decreased markedly, and spherical swellings were formed on the tips of lateral roots. The higher copper concentrations (50 and 150 μM) suppressed completely the development of lateral roots.  相似文献   

18.
Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.  相似文献   

19.
The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild‐type, a full‐deficient mutant and four under‐producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well‐watered plants; and withholding irrigation on pot‐grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA‐deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild‐type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl.  相似文献   

20.
Leaf rolling observed in some crops such as maize, rice, wheat and sorghum is an indicator of decreased water status. Moderate leaf rolling not tightly or early increases the photosynthesis and grain yield of crop cultivars under environmental stresses. Moreover, the effects of exogenous abscisic acid (ABA) on stomatal conductance, water status and synthesis of osmotic compounds are a well-known issue in plants subjected to water deficit. However, it is not clear how the cross-talk of ABA with H2O2 and osmolyte compounds affects the leaf rolling mechanism. Regulation mechanism of leaf rolling by ABA has been first studied in maize seedlings under drought stress induced by polyethylene glycol 6000 (PEG 6000) in this study. ABA treatment under drought stress reduced hydrogen peroxide (H2O2) content and the degree of leaf rolling (%) while the treatment-induced ABA synthesis, osmolyte levels (proline, polyamine and total soluble sugars) and some antioxidant enzyme activities in comparison to the plants that were not treated with ABA. Furthermore, exogenous ABA up-regulated the expression levels of arginine decarboxylase (ADC) and pyrroline-5-carboxylate synthase (P5CS) genes and down-regulated polyamine oxidase (PAO), diamine oxidase (DAO) and proline dehydrogenase (ProDH) gene expressions. When endogenous ABA content was decreased by the treatment of fluoridone (FLU) that is an ABA inhibitor, leaf rolling degree (%), H2O2 content and antioxidant enzyme activities increased, but osmolyte levels, ADC and P5CS gene expressions decreased. Finally, the treatment of ABA to maize seedlings exposed to drought stress resulted in the stimulation of the antioxidant system, osmotic adjustment and reduction of leaf rolling. We concluded that ABA can be a signal compound cross-talking H2O2, proline and polyamines and thus involved in the leaf rolling mechanism by providing osmotic adjustment. The results of this study can be used to provide data for the molecular breeding of maize hybrids with high grain yield by means of moderately rolled leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号