首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of 1-piperidinoantraquinone (1-PA) in microsomal fractions of rat liver was studied. The only product of complete oxidation of 1-PA--(N-antraquinone-1)-delta-aminovaleric acid-was identified using paper and thin-layer chromatography. The participation of cytochrome P-450 in oxidation of 1-PA was demonstrated by sharp inhibition, involving blowing of the microsomes with CO and treatment with sodium deoxycholate. Studies of differential spectra of cytochrome P-450 in the presence of 1-PA are indicative of the first type of binding between 1-PA and cytochrome P-450. The binding constants (Ks) and the kinetic parameters (Km and V) for the above substrate in control microsomes and in those induced by phenobarbital and 3-methyl cholanthrene were determined. The results obtained suggest that cytochrome P-450 is involved in oxidation of a number of heterocyclic compounds resulting in the opening of the ring.  相似文献   

2.
3.
用DE-52纤维素柱色谱法和FPLC法(fastProteinliquidchromatography)分离纯化了大肠杆菌表达的重组缣孢菌细胞色素P-450nor(recombinant fusariumoxvsporumcytochromeP-450nor,rF.P-450nor).经梯度洗脱MonoQ纯化后的rF.P-450nor为单一色谱峰,比活达55.20U/mg,纯化倍数约为1100倍,SDSPAGE检测为单一谱带.  相似文献   

4.
Cytochrome P-450 from the Mesocarp of Avocado (Persea americana)   总被引:5,自引:8,他引:5       下载免费PDF全文
O'keefe DP  Leto KJ 《Plant physiology》1989,89(4):1141-1149
The microsomal fraction from the mesocarp of avocado (Persea americana) is one of few identified rich sources of plant cytochrome P-450. Cytochrome P-450 from this tissue has been solubilized and purified. Enzymatic assays (p-chloro-N-methylaniline demethylase) and spectroscopic observations of substrate binding suggest a low spin form of the cytochrome, resembling that in the microsomal membrane, can be recovered. However, this preparation of native protein is a mixture of nearly equal proportions of two cytochrome P-450 polypeptides that have been resolved only under denaturing conditions. Overall similarities between these polypeptides include indistinguishable amino acid compositions, similar trypsin digest patterns, and cross reactivity with the same antibody. The amino terminal sequences of both polypeptides are identical, with the exception that one of them lacks a methionine residue at the amino terminus. This sequence exhibits some similarities with the membrane targeting signal found at the amino terminus of most mammalian cytochromes P-450.  相似文献   

5.
2-Hydroxyestradiol, 2-hydroxyestrone and 2-hydroxy-17α-ethynylestradiol, oxidation products of naturally occurring estrogens and synthetic estrogens in some oral contraceptives were found to be converted by rat liver microsomes to reactive metabolites that become irreversibly bound to microsomal protein. The irreversible binding required microsomes, oxygen and NADPH. The NADPH could be replaced by a xanthine-xanthine oxidase system which is known to generate superoxide anions. The irreversible binding was substantially inhibited by superoxide dismutase, 30% in those incubations containing NADPH and 98% in those incubations containing the xanthine-xanthine oxidase system. Further studies with 2-hydroxyestradiol showed that microsomal cytochrome P-450 was rate limiting in the NADPH-dependent irreversible binding, because the binding was inhibited 62% by an antibody against NADPH-cytochrome c reductase and 70% in an atmosphere of CO:O2 (9:1) when compared to an atmosphere of N2:O2 (9:1). Phenobarbital, a known inducer of cytochrome P-450, had no effect on the irreversible binding of 2-hydroxyestradiol, whereas another inducer of P-450, pregnenolone-16α-carbonitrile, markedly increased the irreversible binding. In contrast, cobaltous chloride, an inhibitor of the synthesis of cytochrome P-450, decreased both P-450 and the irreversible binding. These results are consistent with a mechanism for irreversible binding of estrogens and 2-hydroxyestrogens to microsomes that requires oxidation of the catechol nucleus by cytochrome P-450-generated superoxide anion.  相似文献   

6.
《Biochemical medicine》1976,15(1):87-94
A partially purified cytochrome P-450 fraction was prepared from the microsomal fraction of human liver. When combined with NADPH, a synthetic phospholipid and NADPH-cytochrome P-450 reductase from rat liver, the cytochrome P-450 fraction from human liver was able to catalyze the following hydroxylations: 11- and 12-hydroxylation of laurate, 12α- and 26-hydroxylation of 5β-cholestane-3α,7α-diol, 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol, and 6β-hydroxylation of androstenedione and progesterone. It was shown that the rate of 11- and 12-hydroxylation of laurate was linear with increasing amounts of cytochrome P-450 and with time in the presence of excess NADPH-cytochrome P-450 reductase and the phospholipid. In the presence of a fixed amount of cytochrome P-450 and the phospholipid, the rate of 11- and 12-hydroxylation increased with increasing concentrations of NADPH-cytochrome P-450 reductase up to a certain level and then remained constant. The requirement of the phospholipid could be increased markedly by centrifugation of the cytochrome P-450 fraction at 100,000g just prior to incubation. It is concluded that cytochrome P-450 from human liver is similar to previously studied cytochrome P-450 from rat liver with respect to catalytic properties and mechanism of reaction.  相似文献   

7.
Soluble extracts of Bacillus megaterium ATCC 14581 prepared by centrifuging a sonicated cell suspension at 40,000 xg for 30 min apparently contained no cytochrome P-450 unless the culture had been grown in the presence of an inducer: a reduced+CO minus reduced spectrum was used to measure cytochrome P-450 concentration. When the 40,000 xg supernatants from the uninduced cultures were recentrifuged at 105,000 xg the respiratory cytochromes, including one like cytochrome a1, were sedimented, and cytochrome P-450 was observed to be 100 nM or 30 +/- 9 p mol cytochrome P-450/mg protein (n=9). Measurements of cytochrome P-450 in cultures induced with phenobarbital were always higher after ultracentrifugation. There was soluble cytochrome o in all extracts. When cytochrome a1 was present a deep trough at 441 nm developed in the reduced +CO minus reduced difference spectrum of the 40,000 xg supernatant of both the uninduced and the induced cultures. The 40,000 xg supernatant obtained after lysing protoplasts of B. megaterium did not contain cytochrome a1 and always gave a good measure of cytochrome P-450.  相似文献   

8.
9.
Abstract

Cytochrome P450 1A1 oxidizes a diverse range of substrates, including the procarcinogenic xenobiotic benzo[a]pyrene (B[a]P) and endogenous fatty acid precursors of prostaglandins, such as arachidonic acid (AA) and eicosapentaenoic acid (EA). We have investigated the extent to which enzyme-substrate interactions govern regio- and stereoselectivity of oxidation of these compounds by using docking and molecular dynamics (MD) simulations to examine the likelihood of substrate oxidation at various sites. Due to structural differences between the substrates analyzed, B[a]P and its diols (planar, rigid), and the fatty acids AA and EA (long, flexible), different docking strategies were required. B[a]P, B[a]P-7,8-diols, (+) 7S,85- and (-) 7R,8R-diols, were docked into the active site of a homology model of P450 1A1 using an automated routine. Affinity (Accelrys, San Diego, CA). AA and EA, on the other hand, required a series of restrained MD simulations to obtain a variety of productive binding modes. All complexes were evaluated by MD-based in silico site scoring to predict product profiles based on certain geometric criteria, such as angle and distance of a given substrate atom from the ferryl oxygen. For all substrates studied, the in vitro profiles were generally reflected by the in silico scores, which suggests that steric factors play a key role in determining regiospecificity in P450 1A1-mediated oxidations. We have also shown that molecular dynamics simulations may be very useful in determination of product profiles for structurally diverse substrates of P450 enzymes.  相似文献   

10.
The effect of substrate on LM2 reduction was examined using a reconstituted system containing dilauroylphosphatidylcholine, NADPH-cytochrome P-450 reductase, and cytochrome P-450 LM2 in a 160:1.5:1 molar ratio. In general, most substrates increased the rate constants of both the first and second phases of reduction as well as the fraction of LM2 reduced in the first phase. The correlation between the high spin content of the cytochrome and each of these kinetic parameters was weaker than expected if spin state controlled LM2 reduction. Further, substrate was shown to exert a rapid effect on both the high spin content and stimulation of reduction indicating that the low spin to high spin shift cannot be responsible for the slow phase of reduction for this particular isoform. Cytochrome P-450 reduction was also examined in both phospholipid-containing and soluble systems where the LM2 and reductase were not present as a preformed complex. In these systems the reactions were substantially slower than with the standard reconstituted system. Addition of substrate enhanced the rate of reduction, indicating that the rate of association between LM2 and the reductase was increased by substrate addition. The strong correlation between the rate of LM2 reduction in a preformed complex and the logarithm of the rate of LM2 and reductase association implicates the rate of functional complex formation as the factor controlling the slow phase of reduction.  相似文献   

11.
Cytochrome P450 (P450) 2U1 has been shown to be expressed, at the mRNA level, in human thymus, brain, and several other tissues. Recombinant P450 2U1 was purified and used as a reagent in a metabolomic search for substrates in bovine brain. In addition to fatty acid oxidation reactions, an oxidation of endogenous N-arachidonoylserotonin was characterized. Subsequent NMR and mass spectrometry and chemical synthesis showed that the main product was the result of C-2 oxidation of the indole ring, in contrast to other human P450s that generated different products. N-Arachidonoylserotonin, first synthesized chemically and described as an inhibitor of fatty acid amide hydrolase, had previously been found in porcine and mouse intestine; we demonstrated its presence in bovine and human brain samples. The product (2-oxo) was 4-fold less active than N-arachidonoylserotonin in inhibiting fatty acid amide hydrolase. The rate of oxidation of N-arachidonoylserotonin was similar to that of arachidonic acid, one of the previously identified fatty acid substrates of P450 2U1. The demonstration of the oxidation of N-arachidonoylserotonin by P450 2U1 suggests a possible role in human brain and possibly other sites.  相似文献   

12.
Crosslinking of protein molecules with bifunctional reagents and subsequent electrophoresis of the modified proteins revealed the presence of cytochrome P-450 LM 2 oligomers in proteoliposome membranes obtained in different ways and differing in their phospholipid composition. Data from a comparative analysis of cytochrome P-450 oligomeric structures in solution and in membrane are suggestive of the hexameric organization of cytochrome P-450 LM 2 within proteoliposome membranes.  相似文献   

13.
The cytochrome P-450 PikC from Streptomyces venezuelae exhibits significant substrate tolerance and performs multiple hydroxylation reactions on structurally variant macrolides bearing the deoxyamino sugar desosamine. In previously determined co-crystal structures (Sherman, D. H., Li, S., Yermalitskaya, L. V., Kim, Y., Smith, J. A., Waterman, M. R., and Podust, L. M. (2006) J. Biol. Chem. 281, 26289–26297), the desosamine moiety of the native substrates YC-17 and narbomycin is bound in two distinct buried and surface-exposed binding pockets, mediated by specific interactions between the protonated dimethylamino group and the acidic amino acid residues Asp50, Glu85, and Glu94. Although the Glu85 and Glu94 negative charges are essential for maximal catalytic activity of native enzyme, elimination of the surface-exposed negative charge at Asp50 results in significantly enhanced catalytic activity. Nevertheless, the D50N substitution could not rescue catalytic activity of PikCE94Q based on lack of activity in the corresponding double mutant PikCD50N/E94Q. To address the specific role for each desosamine-binding pocket, we analyzed the x-ray structures of the PikCD50N mutant co-crystallized with narbomycin (1.85Å resolution) and YC-17 (3.2Å resolution). In PikCD50N, the desosamine moiety of both YC-17 and narbomycin was bound in a catalytically productive “buried site.” This finding suggested a two-step substrate binding mechanism, whereby desosamine is recognized in the two subsites to allow the macrolide substrate to sequentially progress toward a catalytically favorable orientation. Collectively, the binding, mutagenesis, kinetic, and x-ray structural data suggest that enhancement of the catalytic activity of PikCD50N is due to the facilitated relocation of substrate to the buried site, which has higher binding affinity, as opposed to dissociation in solution from the transient “surface-exposed site.”Macrolides are a large family of secondary metabolites belonging to the polyketide class of natural products generated by diverse genera of actinomycetes bacteria. The large macrolactone ring systems are derived from polymerization of simple carboxylic acid precursors catalyzed by modular polyketide synthases and often require further modification by specific tailoring enzymes (1) to acquire or enhance biological activity. The modular architecture of polyketide synthase gene clusters has led to the development of combinatorial biosynthetic approaches that aim to generate novel secondary metabolites through rational engineering of new combinations of polyketide synthase modules (24). Tailoring enzymes, including cytochrome P-450 monooxygenases (P-450),2 are usually encoded within macrolide biosynthetic pathways (5). P-450 enzymes mainly serve to introduce hydroxyl or epoxide functional groups to nascent macrolactone structures or their glycosylated products (1, 3). To date, only three macrolide P-450 monooxygenases including EryF, EpoK, and PikC have been studied at both enzymatic and structural levels. Therefore, the principles of substrate recognition and regio- and stereochemical selectivity are just beginning to emerge for this intriguing group of biosynthetic enzymes.Streptomyces venezuelae P-450 PikC displays a relatively broad substrate and regiospecificity compared with EryF (6) and EpoK (7). This characteristic combined with robust catalytic efficiency as a single component engineered biocatalyst (8) has motivated us to further its development as a prototype P-450 monooxygenase directed toward metabolic engineering and synthetic chemical applications.3 Thus, PikC performs multiple hydroxylations of structurally variant macrolides including the 12-membered ring YC-17 and 14-membered ring narbomycin, leading to methymycin/neomethymycin and the natural ketolide antibiotic pikromycin, respectively (10) (Scheme 1). Ketolides are macrolide derivatives characterized by a C-3 keto group that have received significant attention recently because of their enhanced activity against drug-resistant microbial pathogens (11).Open in a separate windowSCHEME 1.Structures of the PikC native substrates and their hydroxylated products.Both endogenous PikC substrates are glycosylated with the 3-(dimethylamino)-3,4,6-trideoxy sugar desosamine that confers antibiotic activity to a number of macrolide antibiotics such as erythromycin, troleandomycin, mycinamicin, megalomicin (desosamine), tylosin, carbomycin, spiramycin (mycaminose, having an additional hydroxyl group at the C-4 position of the sugar ring), and a highly potent semisynthetic ketolide telithromycin (1113). PikC catalyzes hydroxylation of variant macrolide substrates modified with altered sugar moieties through metabolic engineering (1418) or with unnatural macrolactone ring systems (19, 20). PikC has also been shown to function effectively when immobilized on a microfluidic biochip (21), and when fused to a heterologous electron donor (8), the reductase domain of a self-sufficient P-450RhF from Rhodococcus sp. NCIMB 9784 (22).Recent analysis of the x-ray crystal structures (23) revealed that YC-17 and narbomycin bind in the PikC active site via overlapping modes sharing the macrolactone-binding site and utilizing distinct desosamine binding regions, including buried and surface-exposed pockets, respectively. In both modes, the protonated dimethylamino group of desosamine binds between two negatively charged carboxyl groups of amino acid residues forming a salt bridge with the proximal (relative to the dimethyamino moiety) carboxyl and an ionic contact with the distal one. The triad of carboxylate residues Asp50, Glu85, and Glu94 located in the BC loop provides this set of interactions. Elimination of the negative charge at Glu85 or Glu94 by site-directed mutagenesis virtually inactivates (Glu94) or substantially reduces (Glu85) conversion of both substrates (23). In contrast, elimination of the surface-exposed negative charge at Asp50 via substitution of this residue with asparagine significantly enhances catalytic activity of PikC. To address the specific role for each desosamine-binding pocket, we analyzed the x-ray structures of the catalytically superior PikCD50N mutant co-crystallized with narbomycin or YC-17. In PikCD50N, YC-17 adopts the same binding mode as observed previously in the wild type, with desosamine bound in the buried pocket. In contrast to the previously observed binding mode in wild type PikC, narbomycin was also found predominantly in the buried pocket in the corresponding D50N mutant form, suggesting the possibility of initial substrate recognition in the “surface-exposed site,” with subsequent relocation to the catalytic “buried site.” We herein report PikC substrate binding, enzyme mutagenesis, and kinetic data to support this hypothesis and provide evidence for kinetic control over substrate dissociation versus relocation to the PikC catalytic pocket.  相似文献   

14.
Enzymatic denitrification of 2-nitropropane (2NP) was investigated in an NADPH-dependent hepatic microsomal system from male CD1 mice. The involvement of cytochrome P-450 (P-450) as the catalyst in 2NP denitrification was revealed by the induction of nitrite-releasing activity following phenobarbital (PB) pretreatment, by a decrease in activity with carbon tetrachloride pretreatment, by the inhibition of the reaction with classical P-450 inhibitors, and by the observation of a type I binding spectrum. Under optimal conditions, two pH-dependent peaks of activity were observed at pH 7.6 and pH 8.8, each with its own optimal substrate concentration. Inhibition of the reaction by metyrapone and carbon monoxide (CO) (among others) produced differential responses dependent on pH. These results, along with two pH optima and two substrate optima, suggested the involvement of multiple P-450 isozymes. Average specific activities were 8.05 nmoles of nitrite released per minute per milligram microsomal protein at pH 7.6 and 6.44 nmoles of nitrite released per minute per milligram microsomal protein at pH 8.8. Acetone was identified as the second product of the reaction by gas chromatography/mass spectrometry (GC/MS). Stoichiometry studies indicated that the acetone production was slightly less than expected (about 70%) from nitrite release. Up to 25% residual activity was observed under anaerobic conditions. These results suggested that though the predominant reaction mechanism was oxidative, oxygen-independent metabolism of 2NP also occurred to some extent. In contrast to the reported lack of activity in untreated rat, the observed denitrification in uninduced mouse liver microsomes was significant and suggested that major species-specific differences exist in the in vitro metabolism of 2NP.  相似文献   

15.
16.
1. A new microsomal preparation, obtained from whole houseflies is described in terms of its cytochrome P-450 content and its hydroxylating activity. 2. Microsomes prepared from whole-fly brei, obtained with the aid of a mortar (a procedure that avoids the destruction of sarcosomes), contain 0.265nmol of cytochrome P-450 and hydroxylate naphthalene at a rate of 28.5nmol/mg of microsomal protein in 30min at 30 degrees C. This corresponds to 104nmol of naphthalene hydroxylated/nmol of cytochrome P-450. This is the highest rate ever reported for housefly and rat liver microsomal preparations. 3. Microsomal fractions prepared by procedures that do not retain the integrity of sarcosomes show the presence in the CO-difference spectrum of a 428nm peak. This cytochrome is associated with sarcosomal microsomes and it may be involved in the inhibition of insect microsomal mixed-function oxidases, although other factors cannot be discarded at present. 4. The inability to show cytochrome P-450 in microsomal fractions isolated from whole houseflies by other procedures may be at least partially due to a masking effect brought about by contamination with the sarcosomal cytochrome.  相似文献   

17.
The human cytochrome P450 17A1 (CYP17A1) enzyme operates at a key juncture of human steroidogenesis, controlling the levels of mineralocorticoids influencing blood pressure, glucocorticoids involved in immune and stress responses, and androgens and estrogens involved in development and homeostasis of reproductive tissues. Understanding CYP17A1 multifunctional biochemistry is thus integral to treating prostate and breast cancer, subfertility, blood pressure, and other diseases. CYP17A1 structures with all four physiologically relevant steroid substrates suggest answers to four fundamental aspects of CYP17A1 function. First, all substrates bind in a similar overall orientation, rising ∼60° with respect to the heme. Second, both hydroxylase substrates pregnenolone and progesterone hydrogen bond to Asn202 in orientations consistent with production of 17α-hydroxy major metabolites, but functional and structural evidence for an A105L mutation suggests that a minor conformation may yield the minor 16α-hydroxyprogesterone metabolite. Third, substrate specificity of the subsequent 17,20-lyase reaction may be explained by variation in substrate height above the heme. Although 17α-hydroxyprogesterone is only observed farther from the catalytic iron, 17α-hydroxypregnenolone is also observed closer to the heme. In conjunction with spectroscopic evidence, this suggests that only 17α-hydroxypregnenolone approaches and interacts with the proximal oxygen of the catalytic iron-peroxy intermediate, yielding efficient production of dehydroepiandrosterone as the key intermediate in human testosterone and estrogen synthesis. Fourth, differential positioning of 17α-hydroxypregnenolone offers a mechanism whereby allosteric binding of cytochrome b5 might selectively enhance the lyase reaction. In aggregate, these structures provide a structural basis for understanding multiple key reactions at the heart of human steroidogenesis.  相似文献   

18.
经苯巴比妥钠诱导的雄性大白鼠的肝微粒体纯化的细胞色素P-450同功酶组份,经SDS-PAGE鉴定呈电泳纯,分子量为55kD。部分纯化的NADPH-细胞色素P-450还原酶,含72和77kD两个蛋白质组分。上述细胞色素P-450和NADPH-细胞色素P-450还原酶与卵磷脂制备的脂质体重组后的活性试验表明,对艾氏剂有环氧化作用,对环已烷有羟化作用,对溴氰菊酯的羟化作用微弱。当重组系统中缺少细胞色素P-450组份时,对环已烷不再起作用。同时还研究了纯化的细胞色素P-450的光谱特性。  相似文献   

19.
The presence of oligomers of cytochrome P450 1A2 in membranes of proteoliposomes produced by the cholate-dialysis technique was demonstrated by cross-linking of protein molecules with bifunctional reagents followed by electrophoretic analysis of the modified proteins. A hexameric organization of cytochrome P450 1A2 in the membrane of proteoliposomes is suggested with high probability based on the comparison of the purified hemoprotein oligomeric structure in an aqueous medium and that in the proteoliposomes. The comparison was carried out using the same method.  相似文献   

20.

Background

CYP2C9 encodes a member of the cytochrome P450 superfamily of enzymes which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC). In the past decade, the relationship between CYP2C9 common polymorphisms (R144C and I359L) and CRC has been reported in various ethnic groups; however, these studies have yielded contradictory results. To investigate this inconsistency, we performed this meta-analysis.

Methods

Databases including Pubmed, EMBASE, Web of Science and China National Knowledge Infrastructure (CNKI) were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association.

Results

A total of 13 articles involving 9,463 cases and 11,416 controls were included. Overall, the summary odds ratio of CRC was 0.98 (95% CI: 0.89−1.06) and 0.99 (95% CI: 0.87−1.14) for CYP2C9 144C and 359L alleles, respectively. No significant results were observed using dominant or recessive genetic model for these polymorphisms. In the stratified analyses according to ethnicity and sex, no evidence of any gene-disease association was obtained.

Conclusions

This meta-analysis suggests that the CYP2C9 may not be associated with colorectal cancer development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号