首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study investigated the accumulation of osmotic solutes in citrus (Poncirus trifoliata) seedlings colonized by Glomus versiforme subjected to drought stress or kept well watered. Development of mycorrhizae was higher under well watered than under drought-stressed conditions. Arbuscular mycorrhizal (AM) seedlings accumulated more soluble sugars, soluble starch and total non-structural carbohydrates in leaves and roots than corresponding non-AM seedlings regardless of soil-water status. Glucose and sucrose contents of well-watered and drought-stressed roots, fructose contents of well-watered roots and sucrose contents of drought-stressed leaves were notably higher in AM than in non-AM seedlings. K+ and Ca2+ levels in AM leaves and roots were greater than those in non-AM leaves and roots, while AM symbiosis did not affect the Mg2+ level. AM seedlings accumulated less proline than non-AM seedlings. AM symbiosis altered both the allocation of carbohydrate to roots and the net osmotic solute accumulations in response to drought stress. It is concluded that AM colonization enhances osmotic solute accumulation of trifoliate orange seedlings, thus providing better osmotic adjustment in AM seedlings, which did not correlate with proline but with K+, Ca2+, Mg2+, glucose, fructose and sucrose accumulation.  相似文献   

2.

Background  

Drought is one of the major abiotic stresses affecting plant growth, development and crop productivity. ABA responsive element binding factor (ABF) plays an important role in stress responses via regulating the expression of stress-responsive genes.  相似文献   

3.
The construction of a high-resolution genetic map of citrus would be of great value to breeders and to associate genomic regions with characteristics of agronomic interest. Here, we describe a novel high-resolution map of citrus using a population derived from a controlled cross between Citrus sunki (female parent) and Poncirus trifoliata (male parent). The genetic linkage maps were constructed using DArTseq markers and a pseudo-testcross strategy; only markers showing the expected segregation ratio were considered. To investigate synteny, all markers from both linkage maps were aligned with the genome of Citrus sinensis. The C. sunki map has a total of 2778 molecular markers and a size of 2446.6 cM, distributed across ten linkage groups. The map of P. trifoliata was built with 3084 markers distributed in a total of nine linkage groups, with a total size of 2411.6 cM. These maps are the most saturated linkage maps available for C. sunki and P. trifoliata and have high genomic coverage. We also demonstrated that the maps reported here are closely related to the reference genome of C. sinensis.  相似文献   

4.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

5.
Jerusalem artichoke (Helianthus tuberosus L.) cultivars are conserved in genebanks for use in breeding and horticultural research programs. Jerusalem artichoke collections are particularly vulnerable to environmental and biological threats because they are often maintained in the field. These field collections could be securely conserved in genebanks if improved cryopreservation methods were available. This work used four Jersualem artichoke cultivars (‘Shudi’, ‘M6’, ‘Stampede’, and ‘Relikt’) to improve upon an existing procedure. Four steps were optimized and the resulting procedure is as follows: preculture excised shoot tips (2–3 mm) in liquid MS medium supplemented with 0.4 M sucrose for 3 days, osmoprotect shoot tips in loading solution for 30 min, dehydrate with plant vitrification solution 2 for 15 min before rapid cooling in liquid nitrogen, store in liquid nitrogen, rapidly rewarm in MS liquid medium containing 1.2 M sucrose, and recover on MS medium supplemented with 0.1 mg L?1 GA3 for 3–5 days in the dark and then on the same medium for 4–6 weeks in the light (14 h light/10 h dark). After cryopreservation, Jerusalem artichoke cultivar ‘Shudi’ had the highest survival (93%) and regrowth (83%) percentages. Cultivars ‘M6’, ‘Stampede’, and ‘Relikt’ achieved survival and regrowth percentages ranging from 44 to 72%, and 37–53%, respectively. No genetic changes, as assessed by using simple sequence repeat markers, were detected in plants regenerated after LN exposure in Jerusalem artichoke cultivar ‘Shudi’. Differential scanning calorimetry analyses were used to investigate the thermal activities of the tissues during the cryopreservation process and it was determined that loading with 2.0 M sucrose and 0.4 M sucrose dehydrated the shoot tips prior to treatment with PVS2. Histological observations revealed that the optimized droplet vitrification protocol caused minimal cellular damage within the meristem cells of the shoot tips.  相似文献   

6.
7.
The glycine-methylation biosynthetic pathway of glycinebetaine (GB) has been investigated, but only a few studies on GB accumulation in transgenic higher plants have utilized this pathway. In this study, two methyltransferase genes named ApGSMT2 and ApDMT2, encoding proteins catalyzing GB biosynthesis from glycine, were cloned from a relative strain of Aphanothece halophytica. The potential roles of ApGSMT2 and ApDMT2 in GB synthesis were first examined in transgenic Escherichia coli, which had increased levels of GB and improved salt tolerance. Then ApGSMT2 and ApDMT2 were transferred into tobacco. Compared with transgenic tobacco expressing betA, transgenic tobacco co-expressing ApGSMT2 and ApDMT2 accumulated more GB and exhibited enhanced drought resistance with better germination performance, higher relative water content, less cell membrane damage and better photosynthetic capacity under drought stress. We concluded that the ApGSMT2 and ApDMT2 genes cloned in this study will be very useful for engineering GB-accumulating transgenic plants with enhanced drought resistance.  相似文献   

8.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

9.
The emergence of oseltamivir-resistant variants of influenza virus has highlighted the necessity for the development of more effective novel antiviral drugs. To date, numerous researchers have focused on developing antiviral drugs using natural resources, such as traditional herbal medicines. Poncirus trifoliata is widely used in oriental medicine as a remedy for gastritis, dysentery, inflammation and digestive ulcers. In this study, we investigated the potential antiviral effect of the Poncirus trifoliata orange seed extract against influenza virus. An ethanol extract of Poncirus trifoliata seeds (PTex) inhibited the activity of influenza viruses, in particular, oseltamivir- resistant strains, in Madin-Darby canine kidney cells. In contrast to oseltamivir, PTex exerted a significant inhibitory effect on the cellular penetration pathway of the virus rather than HA receptor binding. The potent antiviral effect and novel working mechanism of PTex support its further development as an effective natural antiviral drug with a wide spectrum of activity against influenza and oseltamivir-resistant viruses.  相似文献   

10.
Citrus FT (CiFT) cDNA, which promoted the transition from the vegetative to the reproductive phase in Arabidopsis thaliana, when constitutively expressed was introduced into trifoliate orange (Poncirus trifoliata L. Raf.). The transgenic plants in which CiFT was expressed constitutively showed early flowering, fruiting, and characteristic morphological changes. They started to flower as early as 12 weeks after transfer to a greenhouse, whereas wild-type plants usually have a long juvenile period of several years. Most of the transgenic flowers developed on leafy inflorescences, apparently in place of thorns; however, wild-type adult trifoliate orange usually develops solitary flowers in the axils of leaves. All of the transgenic lines accumulated CiFT mRNA in their shoots, but there were variations in the accumulation level. The transgenic lines showed variation in phenotypes, such as time to first flowering and tree shape. In F1 progeny obtained by crossing ‘Kiyomi’ tangor (C. unshiu × sinensis) with the pollen of one transgenic line, extremely early flowering immediately after germination was observed. The transgene segregated in F1 progeny in a Mendelian fashion, with complete co-segregation of the transgene and the early flowering phenotype. These results showed that constitutive expression of CiFT can reduce the generation time in trifoliate orange.  相似文献   

11.
An endophytic fungus, F-23, was isolated from the roots of Dendrobium officinale Kimura et Migo, an endangered Chinese medicinal plant. The sequence of the ITS region indicated that the isolate belongs to the genus Mycena. After 4 months of inoculation, the root systems of D. officinale that were inoculated with F-23 fungus were much larger than the control’s root systems. We also observed that the hyphae of F-23 penetrated the epidermal cells within the host’s roots and spread from cell to cell. A large number of pelotons existed in the root cortical cells of D. officinale inoculated with F-23 fungus. Intracellular hyphae crossing through the host walls were also observed using SEM (scanning electron microscopy). In contrast, light microscopy and SEM showed that the transverse sections of the roots of control plants remained uncolonized. Therefore, the F-23 fungus can form mycorrhizal associations with the roots of its host plant, D. officinale, and enhance the growth of seedlings and roots. In brief, Mycena sp. was identified and shown to be a mycorrhizal fungus of the epiphytic orchid, D. officinale. This might be of potential use to the mass cultivation of D. officinale under artificial conditions.  相似文献   

12.
13.
14.
Clethra barbinervis (Ericales), Cucumis sativus, and Lycopersicon esculentum were grown in soils collected from six different vegetation sites (cedar, cypress, larch, red pine, bamboo grass, and Italian ryegrass), and morphology and colonization preference of arbuscular mycorrhizal (AM) fungi were investigated by microscopic observation and PCR detection. C. barbinervis consistently formed Paris-type AM throughout the sites. C. sativus formed both Arum- and Paris-type AM with high occurrence of Arum-type AM. L. esculentum also formed both Arum- and Paris-type AM but with high occurrence of Paris-type AM. AM diversity within the same plant species was different among the sites. Detected AM diversity from AM spores in different site soils did not consistently reflect AM fungal diversity seen in test plants. Detected families were different, depending on test plants grown even in the same soil. AM fungi belonging to Glomaceae were consistently detected from roots of all test plants throughout the sites. Almost all the families were detected from roots of C. barbinervis and L. esculentum. On the other hand, only two or three families of AM fungi (Archaeosporaceae and/or Paraglomaceae and Glomaceae) but not two other families (Acaulosporaceae and Gigasporaceae) were detected from roots of C. sativus, indicating strong colonization preference of AM fungi to C. sativus among test plants. This study demonstrated that host plant species strongly influenced the colonization preference of AM fungi in the roots.  相似文献   

15.

Key message

Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition.

Abstract

The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
  相似文献   

16.
17.
18.

Main conclusion

Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.
  相似文献   

19.
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.  相似文献   

20.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号