首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
 A synthetic Bacillus thuringiensis cry1C gene was transferred to three Korean cultivars of Chinese cabbage via Agrobacterium tumefaciens-mediated transformation of hypocotyl explants. Hygromycin resistance served as an efficient selective marker. The transformation efficiency ranged from 5% to 9%. Transformation was confirmed by Southern blot analysis, PCR, Northern analysis, and progeny tests. Many transgenic plants of the closed-head types (lines Olympic and Samjin) flowered in vitro. Over 50 hygromycin-resistant plants were successfully transferred to soil. The transgenic plants and their progeny were resistant to diamondback moths (DBM, Plutella xylostella), the major insect pest of crucifers world-wide, as well as to cabbage loopers (Trichoplusia ni) and imported cabbage worms (Pieris rapae). Both susceptible Geneva DBM and a DBM population resistant to Cry1A protein were controlled by the Cry1C-transgenic plants. The efficient and reproducible transformation system described may be useful for the transfer of other agriculturally important genes into Chinese cabbage. Received: 12 June 2000 / Revision received: 21 August 2000 / Accepted: 22 August 2000  相似文献   

2.
Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host‐searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA‐treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA‐treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect‐feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.  相似文献   

3.
Stable performance of insect‐resistant transgenic plants across field seasons and between plant organs damaged by the insect pest is critical for management of this resistance in the field. To evaluate this, potato (Solanum tuberosum) lines transgenic for a cry1Ac9 gene with resistance to potato tuber moth (Phthorimaea operculella) were established in the field during the southern hemisphere summers of 1997/98, 1998/99 and 1999/00 as small field plots, each of 10 plants. Replicate plots of the non‐transgenic parent cultivars (at least one for every three independently derived transgenic lines) were planted randomly throughout the trials. Field‐grown foliage was challenged with larvae in the laboratory and a growth index (GI) was calculated for recovered larvae from each transgenic and non‐transgenic potato line. Larval growth on young and mature leaves, and on newly harvested or stored tubers was also measured in the laboratory. Foliage from the transgenic lines inhibited larval growth in all seasons tested. For both control and transgenic lines, larvae had slightly lower GIs when reared on mature leaves compared with young leaves, although the correlation between mean GI for young and mature transgenic leaves was high (r = 0.97). The correlation between the mean GIs of larvae on newly harvested tubers and on those stored for 5 months was also high (r = 1.0). However, the GIs of larvae on newly harvested transgenic tubers were larger than on transgenic tubers stored for 5 months. The relative growth indices (RGI = mean GI/number days before final weighing) of larvae reared on newly harvested tubers from transgenic lines were generally higher than those from young transgenic foliage, while the RGIs of larvae reared on non‐transgenic tubers were slightly lower than those fed non‐transgenic foliage. The correlation between mean RGIs of larvae fed tubers or foliage was 0.62. The transgenic potato lines exhibited stable resistance to larvae across field seasons, between affected plant organs, and between plant organs of different ages.  相似文献   

4.
The oviposition behaviour of Plutella xylostella L. (Lepidoptera: Plutellidae) on Chinese cabbage (Brassica rapa L. Pekinensis, cv. Wombok), canola (Brassica napus L. cv. Thunder TT), and cabbage (Brassica oleracea L. Capitata, cv. sugarloaf) (Brassicaceae) was studied in the laboratory. In no‐choice experiments moths laid most eggs on the stems and lower three leaves of cabbage plants, the lower three leaves of canola plants, but on the upper three leaves of Chinese cabbage plants. The effects of conspecific herbivore damage to foliage could be replicated by mechanical damage. When foliage was damaged, injured cabbage and canola plants were preferred for oviposition over intact conspecifics, whereas injured Chinese cabbage plants were less preferred than intact conspecifics. However, when root tissue was damaged, intact cabbage and canola plants were preferred over injured conspecifics, whereas moths did not discriminate between root‐damaged and intact Chinese cabbage plants. Injury to upper leaves significantly affected the intra‐plant distribution of eggs. In cabbage and canola plants, injury to leaf 6 significantly increased the number of eggs laid on this leaf, resulting in a significant decrease in the number of eggs laid on the lower foliage/stem of plants, whereas in Chinese cabbage plants it significantly decreased the number of eggs laid on leaf 6. Following oviposition on intact plants, neonate larvae established the vast majority of feeding sites on leaves 5–8 in all three host plants, indicating that larvae moved a considerable distance from preferred oviposition sites in cabbage and canola plants. The growth rate of neonates fed on leaf‐6 tissue was significantly greater than that of those fed on leaf‐1 tissue; >90% of larvae completed development when fed exclusively on leaf‐6 tissue but no larvae completed development when fed exclusively on leaf‐1 tissue. The study demonstrates the complex and unpredictable interactions between P. xylostella and its host plants and provides a basis from which we can begin to understand observed distributions of the pest in Brassica crops.  相似文献   

5.
Helicoverpa armigera is a major pest of many tropical crop plants. Soybean trypsin inhibitor (SBTI) was highly effective against the proteolytic activity of gut extract of the insect. SBTI was also inhibitory to insect growth when present in artificial diet. The gene coding for SBTI was cloned from soybean (Glycine max, CVBirsa) and transferred to tobacco plants for constitutive expression. Young larvae ofH. armigera, fed on the leaves of the transgenic tobacco plants expressing high level of SBTI, however, maintained normal growth and development. The results suggest that in certain cases the trypsin inhibitor gene(s) may not be suitable candidates for developing insect resistant transgenic plants.  相似文献   

6.
Oviposition patterns of the diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), differ between common cabbage (Brassica oleracea L. var. capitata) and Chinese cabbage (Brassica rapa L. var. pekinensis) (Brassicaceae) host plants. This study shows that the moth prefers to oviposit on adaxial rather than abaxial leaf surfaces and petioles of both host plants. More eggs were laid in leaf veins than on leaf laminas of both host plants, especially in Chinese cabbage, where 94.6% of eggs were laid in veins. On Chinese cabbage, very few eggs were laid in clusters (≥2 eggs), whereas on common cabbage approximately 30% of eggs were laid in groups of 2 or more eggs. Removal of wax from common cabbage leaves dramatically increased the number of eggs laid singly on the leaf lamina of treated plants, suggesting that leaf waxes affect how eggs are distributed by ovipositing DBM. Eggs were most susceptible to removal by rainfall from the plant surface immediately (<1 h) after oviposition and when close to hatching (>72h old) whereas they were least susceptible 24 h after oviposition. Eggs laid on common cabbage plants were more susceptible to simulated rainfall than eggs laid on Chinese cabbage plants. On common cabbage plants, egg susceptibility to rainfall on different plant parts ranked adaxial leaf surfaces>petioles = abaxial leaf surfaces>stem, but there was no difference in egg susceptibility to rainfall on the various plant parts of Chinese cabbage. Furthermore, on common cabbage plants, eggs laid on both adaxial and abaxial leaf surfaces were afforded significant protection from the effects of rainfall by leaves higher in the plant canopy. On common cabbage plants, oviposition patterns reduce the potential impact of rainfall on eggs, possibly reducing the effect of this important abiotic mortality factor in the field.  相似文献   

7.
8.
Zhu JQ  Liu S  Ma Y  Zhang JQ  Qi HS  Wei ZJ  Yao Q  Zhang WQ  Li S 《PloS one》2012,7(6):e38572
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.  相似文献   

9.
Laboratory studies were performed to explore the effects of host-plant quality on the vulnerability of Plutella xylostella to Bacillus thuringiensis. P. xylostella were kept on different host plants, including Brassica pekinensis (Chinese cabbage) cv. Hero, Brassica oleracea var. botrytis (cauliflower) cv. Royal, and B. oleracea var. capitata (common cabbage) cv. Globe Master (white cabbage) and cv. Red Dynasty (red cabbage) for at least two generations. These host plants are considered as the high (Chinese cabbage), intermediate (cauliflower and white cabbage) and low-quality (red cabbage) hosts for P. xylostella. The vulnerability of the pest larvae was then tested using two formulation of B. thuringiensis var. kurstaki, including Biolarv® and Biolep®. The results demonstrated that the susceptibility of P. xylostella to B. thuringiensis was influenced by host-plant quality. Indeed, B. thuringiensis acted better on the pest fed on the low-quality host plant compared with that on the high-quality host plant. The interaction between the pathogen and plant quality/resistance resulted in more mortality of the pest larvae, implying a synergistic effect. From a pest management viewpoint, these findings may be promising for the integration of the pathogen and the low-quality/partially resistant host plants against P. xylostella in field studies.  相似文献   

10.
1 Laboratory studies demonstrated that the susceptibility of larvae of the lepidopteran crucifer pest Plutella xylostella to the insect pathogen Bacillus thuringiensis (Bt) was influenced by the host plant. 2 Larvae reared on the resistant cabbage cultivars Minicole F1 and Red Drumhead were significantly more susceptible to Bt (the LC50 fell to one half) than larvae fed leaves of susceptible cultivars. 3 However, a third resistant cultivar, Aquarius F1, had no synergistic effect on Bt‐related mortality. 4 Actual uptake of Bt was monitored in the bioassays, as a preliminary experiment showed that the plant resistance reduced consumption of Bt‐treated leaf discs. However, differences in feeding rate did not explain the observed differences in mortality.  相似文献   

11.
《Biological Control》2004,29(2):270-277
Host plant-mediated orientation and oviposition by diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) and its predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) were studied in response to four different brassica host plants: cabbage, (Brassica oleracea L. subsp. capitata), cauliflower (B. oleracea L. subsp. botrytis), kohlrabi (B. oleracea L. subsp. gongylodes), and broccoli (B. oleracea L. subsp. italica). Results from laboratory wind tunnel studies indicated that orientation of female DBM and C. carnea females towards cabbage and cauliflower was significantly greater than towards either broccoli or kohlrabi plants. However, DBM and C. carnea males did not orient towards any of the host plants. In no-choice tests, oviposition by DBM did not differ significantly among the test plants, while C. carnea layed significantly more eggs on cabbage, cauliflower, and broccoli than on kohlrabi. However, in free-choice tests, oviposition by DBM was significantly greater on cabbage, followed by cauliflower, broccoli, and kohlrabi, while C. carnea preferred to oviposit on cabbage and cauliflower, followed by broccoli and kohlrabi. The predation rates of DBM by C. carnea on kohlrabi and broccoli were not significantly different from one another, but were significantly higher than that on cabbage and cauliflower. When two types of plant, intact and injured, were available to adult DBM, female oviposition was significantly greater on injured plant leaves than on intact plants leaves. Similarly, C. carnea oviposition was significantly greater on injured plant leaves than on intact leaves. Implications regarding the possible role of green leaf volatiles in host selection/preference, as well as in tritropic interactions, are discussed.  相似文献   

12.
Cultivating insect pest-resistant varieties is one of the most effective ways to prevent or mitigate pest infestation in Chinese cabbage (Brassica campestris ssp. chinensis). Via the agrobacterium tumefaciens-mediated transformation method, this study introduced the protease inhibitor encoding gene sporamin into two widely cultured cultivars ‘Youdonger’ and ‘Shanghaiqing’, of the common variety of Chinese cabbages (B. campestriss ssp. chinensis var. communis), getting transgenic plants with high sporamin expression. In vitro insect bioassays indicated that, compared with the wild type plants, the transgenic plants exhibited improved resistance to diamondback moth (Plutella xylostella L.) The analysis of inheritance pattern of exogenous sporamin in the progenies of single copy insertion transgenic lines demonstrated that sporamin could be inherited and expressed stably in transgenic progenies. Field survey of the insect resistance under the normal culture condition confirmed the enhanced resistance in transgenic progenies to diamondback moth. Our results strongly suggest that sporamin is an efficient candidate gene for insect-resistant genetic engineering in Chinese cabbage.  相似文献   

13.
Wang J  Chen Z  Du J  Sun Y  Liang A 《Plant cell reports》2005,24(9):549-555
Transgenic plants with introduced pest-resistant gene offer an efficient alternative insect control. The novel insect-resistant gene combination, chitinase(chi) and BmkIT(Bmk), containing an insect-specific chitinase gene and a scorpion insect toxin gene was introduced into Brassica napus cultivar via Agrobacterium-mediated transformation. Fifty-seven regenerated plantlets with kanamycin-resistance were obtained. Transgenic plants were verified by Southern blot analysis. Enzyme-linked immunosorbent assay (ELISA) and bioassay of artificial inoculation with diamondback moth (Plutella maculipenis) (DBM) larvae indicated that some of the transgenic plants were high-level expression for both chitinase and scorpion toxin proteins and performed high resistance against the tested pest infestation. The genetic analysis of T1 progeny confirmed that the inheritance of introduced genes followed the Mendelian rules.  相似文献   

14.
15.
为研究StP5CS基因在结球甘蓝中的耐盐作用,以结球甘蓝下胚轴为外植体,采用农杆菌介导法将耐盐基因StP5CS和抗除草剂Bar基因导入结球甘蓝基因组中,在双丙氨膦的筛选下扩繁、生根,共获得了36株抗性植株。PCR扩增和Southern印迹杂交检测表明:目的基因StP5CS和Bar基因已经成功导入结球甘蓝基因组中。RT-PCR检测表明:StP5CS基因在转录水平也有表达。转基因植株耐盐试验结果显示:高浓度盐处理(400mmol/L NaCl)下,对照植株整株枯死,而转基因植株仍能正常生长;转基因植株的SOD活性、脯氨酸含量和相对膜透性均随盐浓度的升高呈上升趋势,均在400mmol/L NaCl处理下达到最大。结果表明转基因植株对高盐环境有一定的耐受性。  相似文献   

16.
We developed a transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin, with high tolerance to soft rot disease. Tolerance was conferred by expression of N-acyl-homoserine lactonase (AHL-lactonase) in Chinese cabbage through an efficient Agrobacterium-mediated transformation method. To synthesize and express the AHL-lactonase in Chinese cabbage, the plant was transformed with the aii gene (AHL-lactonase gene from Bacillus sp. GH02) fused to the PinII signal peptide (protease inhibitor II from potato). Five transgenic lines were selected by growth on hygromycin-containing medium (3.7% transformation efficiency). Southern blot analysis showed that the transgene was stably integrated into the genome. Among these five transgenic lines, single copy number integrations were observed in four lines and a double copy number integration was observed in one transgenic line. Northern blot analysis confirmed that pinIISP-aii fusion gene was expressed in all the transgenic lines. Soft rot disease tolerance was evaluated at tissue and seedling stage. Transgenic plants showed a significantly enhanced tolerance (2–3-fold) to soft rot disease compared to wild-type plants. Thus, expression of the fusion gene pinIISP-aii reduces susceptibility to soft rot disease in Chinese cabbage. We conclude that the recombinant AHL-lactonase, encoded by aii, can effectively quench bacterial quorum-sensing and prevent bacterial population density-dependent infections. To the best of our knowledge, the present study is the first to demonstrate the transformation of Chinese cabbage inbred line Kenshin, and the first to describe the effect of the fusion gene pinIISP-aii on enhancement of soft rot disease tolerance.  相似文献   

17.
18.
Transgenic crops genetically engineered for enhanced insect resistance should be compatible with other components of IPM for the pest resistance to be durable and effective. An experimental potato line was genetically engineered to express an anti-aphid plant protein (snowdrop lectin, GNA), and assessed for possible interactions of the insect resistance gene with a beneficial pest predator. These extended laboratory studies are the first to demonstrate adverse tri-trophic interactions involving a lectin- expressing transgenic crop, a target pest aphid and a beneficial aphidophagous predator. When adult 2-spot ladybirds (Adalia bipunctata[L.]) were fed for 12 days on peach-potato aphids (Myzus persicae Sulzer) colonising transgenic potatoes expressing GNA in leaves, ladybird fecundity, egg viability and longevity significantly decreased over the following 2–3 weeks. No acute toxicity due to the transgenic plants was observed, although female ladybird longevity was reduced by up to 51%. Adverse effects on ladybird reproduction, caused by eating peach-potato aphids from transgenic potatoes, were reversed after switching ladybirds to feeding on pea aphids from non-transgenic bean plants. These results demonstrate that expression of a lectin gene for insect resistance in a transgenic potato line can cause adverse effects to a predatory ladybird via aphids in its food chain. The significance of these potential ecological risks under field conditions need to be further evaluated.  相似文献   

19.
青菜的高效再生和农杆菌介导B.t.及CpTI基因的转化   总被引:11,自引:0,他引:11  
分别对培养基中适宜的激素组成和AgNO3 添加浓度进行研究 ,建立了青菜下胚轴和子叶外植体的高效再生系统 ,青菜品种“矮抗青”的最高芽分化频率下胚轴可达 6 5 % ,子叶为 5 2 %左右。在此基础上 ,对影响转化频率的不同因素进行了探讨 ,共获 94株卡那霉素抗性植株。对转基因植株总DNA的Southernblot ting分析证明 ,B .t .基因和CpTI基因已整合到青菜植株的细胞核基因组中。经过抗虫性筛选试验 ,从转基因植株的T3 代筛选到 7个转B .t.基因的抗虫纯合株系和 5个转CpTI基因的抗虫纯合株系 ,并进入田间小区青菜抗虫新品种试验  相似文献   

20.
A member of the potato proteinase inhibitor II (PPI II) gene family that encodes for a chymotrypsin iso-inhibitor has been introduced into tobacco (Nicotiana tabacum) usingAgrobacterium tumefaciens-mediated T-DNA transfer. Analysis of the primary transgenic plants (designated R0) confirmed that the introduced gene is being expressed and the inhibitor accumulates as an intact and fully functional protein. For insect feeding trials, progeny from the self-fertilization of R0 plants (designated R1) were used. Leaf tissue, either from transgenic or from control (non-transgenic) plants, was fed to larvae ofChrysodeixis eriosoma (Lepidoptera: Noctuidae, green looper),Spodoptera litura (F.) (Lepidoptera: Noctuidae) andThysanoplusia orichalcea (F.) (Lepidoptera: Noctuidae) and insect weight gain (increase in fresh weight) measured. Consistently,C. eriosoma larvae fed leaf tissue from transgenic plants expressing thePPI II gene grew slower than insects fed leaf tissue from non-transgenic plants or transgenic plants with no detectablePPI II protein accumulation. However, larvae of bothS. litura andT. orichalcea consistently demonstrated similar or faster growth when fed leaf tissue from transgenic plants compared with those fed non-transgenic plants. In agreement with the feeding trials, the chymotrypsin iso-inhibitor extracted from transgenic tobacco effectively retarded chymotrypsin-like activity measured inC. eriosoma digestive tract extracts, but not in extracts fromS. litura. We conclude, therefore, that for certain insects the use of chymotrypsin inhibitors should now be evaluated as an effective strategy to provide field resistance against insect pests in transgenic plants, but further, that a single proteinase inhibitor gene may not be universally effective against a range of insect pests. The significance of these observations is discussed with respect to the inclusion of chymotrypsin inhibitors in the composite of insect pest resistance factors that have been proposed for introduction into crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号