首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition-independent role in P19 cell neural differentiation.  相似文献   

2.
Secreted FGFR3, but not FGFR1, inhibits lens fiber differentiation   总被引:11,自引:0,他引:11  
The vertebrate lens has a distinct polarity with cuboidal epithelial cells on the anterior side and differentiated fiber cells on the posterior side. It has been proposed that the anterior-posterior polarity of the lens is imposed by factors present in the ocular media surrounding the lens (aqueous and vitreous humor). The differentiation factors have been hypothesized to be members of the fibroblast growth factor (FGF) family. Though FGFs have been shown to be sufficient for induction of lens differentiation both in vivo and in vitro, they have not been demonstrated to be necessary for endogenous initiation of fiber cell differentiation. To test this possibility, we have generated transgenic mice with ocular expression of secreted self-dimerizing versions of FGFR1 (FR1) and FGFR3 (FR3). Expression of FR3, but not FR1, leads to an expansion of proliferating epithelial cells from the anterior to the posterior side of the lens due to a delay in the initiation of fiber cell differentiation. This delay is most apparent postnatally and correlates with appropriate changes in expression of marker genes including p57(KIP2), Maf and Prox1. Phosphorylation of Erk1 and Erk2 was reduced in the lenses of FR3 mice compared with nontransgenic mice. Though differentiation was delayed in FR3 mice, the lens epithelial cells still retained their intrinsic ability to respond to FGF stimulation. Based on these results we propose that the initiation of lens fiber cell differentiation in mice requires FGF receptor signaling and that one of the lens differentiation signals in the vitreous humor is a ligand for FR3, and is therefore likely to be an FGF or FGF-like factor.  相似文献   

3.
Blagovic K  Kim LY  Voldman J 《PloS one》2011,6(8):e22892

Background

Autocrine & paracrine signaling are widespread both in vivo and in vitro, and are particularly important in embryonic stem cell (ESC) pluripotency and lineage commitment. Although autocrine signaling via fibroblast growth factor-4 (FGF4) is known to be required in mouse ESC (mESC) neuroectodermal specification, the question of whether FGF4 autocrine signaling is sufficient, or whether other soluble ligands are also involved in fate specification, is unknown. The spatially confined and closed-loop nature of diffusible signaling makes its experimental control challenging; current experimental approaches typically require prior knowledge of the factor/receptor in order to modulate the loop. A new approach explored in this work is to leverage transport phenomena at cellular resolution to downregulate overall diffusible signaling through the physical removal of cell-secreted ligands.

Methodology/Principal Findings

We develop a multiplex microfluidic platform to continuously remove cell-secreted (autocrine\paracrine) factors to downregulate diffusible signaling. By comparing cell growth and differentiation in side-by-side chambers with or without added cell-secreted factors, we isolate the effects of diffusible signaling from artifacts such as shear, nutrient depletion, and microsystem effects, and find that cell-secreted growth factor(s) are required during neuroectodermal specification. Then we induce FGF4 signaling in minimal chemically defined medium (N2B27) and inhibit FGF signaling in fully supplemented differentiation medium with cell-secreted factors to determine that the non-FGF cell-secreted factors are required to promote growth of differentiating mESCs.

Conclusions/Significance

Our results demonstrate for the first time that flow can downregulate autocrine\paracrine signaling and examine sufficiency of extracellular factors. We show that autocrine\paracrine signaling drives neuroectodermal commitment of mESCs through both FGF4-dependent and -independent pathways. Overall, by uncovering autocrine\paracrine processes previously hidden in conventional culture systems, our results establish microfluidic perfusion as a technique to study and manipulate diffusible signaling in cell systems.  相似文献   

4.
5.
6.
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal‐regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3‐E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3‐E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF‐ERK1/2 and BMP‐Smad pathways, and suppresses the induction of markers of osteoblast differentiation.  相似文献   

7.
8.
A number of regulatory genes have been implicated in neural crest development. However, the molecular mechanism of how neural crest determination is initiated in the exact ectodermal location still remains elusive. Here, we show that the cooperative function of Pax3 and Zic1 determines the neural crest fate in the amphibian ectoderm. Pax3 and Zic1 are expressed in an overlapping manner in the presumptive neural crest area of the Xenopus gastrula, even prior to the onset of the expression of the early bona fide neural crest marker genes Foxd3 and Slug. Misexpression of both Pax3 and Zic1 together efficiently induces ectopic neural crest differentiation in the ventral ectoderm, whereas overexpression of either one of them only expands the expression of neural crest markers within the dorsolateral ectoderm. The induction of neural crest differentiation by Pax3 and Zic1 requires Wnt signaling. Loss-of-function studies in vivo and in the animal cap show that co-presence of Pax3 and Zic1 is essential for the initiation of neural crest differentiation. Thus, co-activation of Pax3 and Zic1, in concert with Wnt, plays a decisive role for early neural crest determination in the correct place of the Xenopus ectoderm.  相似文献   

9.
At the border of the neural plate, the induction of the neural crest can be achieved by interactions with the epidermis, or with the underlying mesoderm. Wnt signals are required for the inducing activity of the epidermis in chick and amphibian embryos. Here, we analyze the molecular mechanisms of neural crest induction by the mesoderm in Xenopus embryos. Using a recombination assay, we show that prospective paraxial mesoderm induces a panel of neural crest markers (Slug, FoxD3, Zic5 and Sox9), whereas the future axial mesoderm only induces a subset of these genes. This induction is blocked by a dominant negative (dn) form of FGFR1. However, neither dnFGFR4a nor inhibition of Wnt signaling prevents neural crest induction in this system. Among the FGFs, FGF8 is strongly expressed by the paraxial mesoderm. FGF8 is sufficient to induce the neural crest markers FoxD3, Sox9 and Zic5 transiently in the animal cap assay. In vivo, FGF8 injections also expand the Slug expression domain. This suggests that FGF8 can initiate neural crest formation and cooperates with other DLMZ-derived factors to maintain and complete neural crest induction. In contrast to Wnts, eFGF or bFGF, FGF8 elicits neural crest induction in the absence of mesoderm induction and without a requirement for BMP antagonists. In vivo, it is difficult to dissociate the roles of FGF and WNT factors in mesoderm induction and neural patterning. We show that, in most cases, effects on neural crest formation were parallel to altered mesoderm or neural development. However, neural and neural crest patterning can be dissociated experimentally using different dominant-negative manipulations: while Nfz8 blocks both posterior neural plate formation and neural crest formation, dnFGFR4a blocks neural patterning without blocking neural crest formation. These results suggest that different signal transduction mechanisms may be used in neural crest induction, and anteroposterior neural patterning.  相似文献   

10.
11.
In Xenopus embryos, XMeis3 protein activity is required for normal hindbrain formation. Our results show that XMeis3 protein knock down also causes a loss of primary neuron and neural crest cell lineages, without altering expression of Zic, Sox or Pax3 genes. Knock down or inhibition of the Pax3, Zic1 or Zic5 protein activities extinguishes embryonic expression of the XMeis3 gene, as well as triggering the loss of hindbrain, neural crest and primary neuron cell fates. Ectopic XMeis3 expression can rescue the Zic knock down phenotype. HoxD1 is an XMeis3 direct-target gene, and ectopic HoxD1 expression rescues cell fate losses in either XMeis3 or Zic protein knock down embryos. FGF3 and FGF8 are direct target genes of XMeis3 protein and their expression is lost in XMeis3 morphant embryos. In the genetic cascade controlling embryonic neural cell specification, XMeis3 lies below general-neuralizing, but upstream of FGF and regional-specific genes. Thus, XMeis3 protein is positioned at a key regulatory point, simultaneously regulating multiple neural cell fates during early vertebrate nervous system development.  相似文献   

12.
13.
Previous work has shown that the posteriorising agent retinoic acid can accelerate anterior neuronal differentiation in Xenopus laevis embryos (Papalopulu, N. and Kintner, C. (1996) Development 122, 3409-3418). To elucidate the role of retinoic acid in the primary neurogenesis cascade, we investigated whether retinoic acid treatment of whole embryos could change the spatial expression of a set of genes known to be involved in neurogenesis. We show that retinoic acid expands the N-tubulin, X-ngnr-1, X-MyT1, X-&Dgr;-1 and Gli3 domains and inhibits the expression of Zic2 and sonic hedgehog in the neural ectoderm, whereas a retinoid antagonist produces opposite changes. In contrast, sonic and banded hedgehog overexpression reduced the N-tubulin stripes, enlarged the neural plate at the expense of the neural crest, downregulated Gli3 and upregulated Zic2. Thus, retinoic acid and hedgehog signaling have opposite effects on the prepattern genes Gli3 and Zic2 and on other genes acting downstream in the neurogenesis cascade. In addition, retinoic acid cannot rescue the inhibitory effect of Notch(ICD), Zic2 or sonic hedgehog on primary neurogenesis. Our results suggest that retinoic acid acts very early, upstream of sonic hedgehog, and we propose a model for regulation of differentiation and proliferation in the neural plate, showing that retinoic acid might be activating primary neurogenesis by repressing sonic hedgehog expression.  相似文献   

14.
15.
16.
17.
The Drosophila sprouty gene encodes an antagonist of FGF and EGF signaling whose expression is induced by the signaling pathways that it inhibits. Here we describe a family of vertebrate Sprouty homologs and demonstrate that the regulatory relationship with FGF pathways has been conserved. In both mouse and chick embryos, Sprouty genes are expressed in intimate association with FGF signaling centers. Gain- and loss-of-function experiments demonstrate that FGF signaling induces Sprouty gene expression in various tissues. Sprouty overexpression obtained by infecting the prospective wing territory of the chick embryo with a retrovirus containing a mouse Sprouty gene causes a reduction in limb bud outgrowth and other effects consistent with reduced FGF signaling from the apical ectodermal ridge. At later stages of development in the infected limbs there was a dramatic reduction in skeletal element length due to an inhibition of chondrocyte differentiation. The results provide evidence that vertebrate Sprouty proteins function as FGF-induced feedback inhibitors, and suggest a possible role for Sprouty genes in the pathogenesis of specific human chondrodysplasias caused by activating mutations in Fgfr3.  相似文献   

18.
19.
Requirements for FGF3 and FGF10 during inner ear formation   总被引:8,自引:0,他引:8  
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号