首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Plants, bacteria, fungi, and yeast utilize organic iron chelators (siderophores) to establish commensal and pathogenic relationships with hosts and to survive as free-living organisms. In Gram-negative bacteria, transport of siderophores into the periplasm is mediated by TonB-dependent receptors. A complex of three membrane-spanning proteins TonB, ExbB and ExbD couples the chemiosmotic potential of the cytoplasmic membrane with siderophore uptake across the outer membrane. The crystallographic structures of two TonB-dependent receptors (FhuA and FepA) have recently been determined. These outer membrane transporters show a novel fold consisting of two domains. A 22-stranded antiparallel beta-barrel traverses the outer membrane and adjacent beta-strands are connected by extracellular loops and periplasmic turns. Located inside the beta-barrel is the plug domain, composed primarily of a mixed four-stranded beta-sheet and a series of interspersed alpha-helices. Siderophore binding induces distinct local and allosteric transitions that establish the structural basis of signal transduction across the outer membrane and suggest a transport mechanism.  相似文献   

3.
Plants, bacteria, fungi, and yeast utilize organic iron chelators (siderophores) to establish commensal and pathogenic relationships with hosts and to survive as free-living organisms. In Gram-negative bacteria, transport of siderophores into the periplasm is mediated by TonB-dependent receptors. A complex of three membrane-spanning proteins TonB, ExbB and ExbD couples the chemiosmotic potential of the cytoplasmic membrane with siderophore uptake across the outer membrane. The crystallographic structures of two TonB-dependent receptors (FhuA and FepA) have recently been determined. These outer membrane transporters show a novel fold consisting of two domains. A 22-stranded antiparallel β-barrel traverses the outer membrane and adjacent β-strands are connected by extracellular loops and periplasmic turns. Located inside the β-barrel is the plug domain, composed primarily of a mixed four-stranded β-sheet and a series of interspersed α-helices. Siderophore binding induces distinct local and allosteric transitions that establish the structural basis of signal transduction across the outer membrane and suggest a transport mechanism.  相似文献   

4.
TonB is a key protein in active transport of essential nutrients like vitamin B12 and metal sources through the outer membrane transporters of Gram-negative bacteria. This inner membrane protein spans the periplasm, contacts the outer membrane receptor by its periplasmic domain and transduces energy from the cytoplasmic membrane pmf to the receptor allowing nutrient internalization. Whereas generally a single TonB protein allows the acquisition of several nutrients through their cognate receptor, in some species one particular TonB is dedicated to a specific system. Despite a considerable amount of data available, the molecular mechanism of TonB-dependent active transport is still poorly understood. In this work, we present a structural study of a TonB-like protein, HasB dedicated to the HasR receptor. HasR acquires heme either free or via an extracellular heme transporter, the hemophore HasA. Heme is used as an iron source by bacteria. We have solved the structure of the HasB periplasmic domain of Serratia marcescens and describe its interaction with a critical region of HasR. Some important differences are observed between HasB and TonB structures. The HasB fold reveals a new structural class of TonB-like proteins. Furthermore, we have identified the structural features that explain the functional specificity of HasB. These results give a new insight into the molecular mechanism of nutrient active transport through the bacterial outer membrane and present the first detailed structural study of a specific TonB-like protein and its interaction with the receptor.  相似文献   

5.
6.
7.
Heme, an iron supply for vibrios pathogenic for fish   总被引:1,自引:0,他引:1  
  相似文献   

8.
细菌内依赖TonB的外膜铁转运体的研究进展   总被引:1,自引:0,他引:1  
铁是细菌所必需的微量营养元素,但由于易被氧化溶解性低,生物体的利用率大大降低。细菌在进化过程中形成多种策略来吸收环境中低浓度的铁,不同类型铁的吸收通过外膜上依赖TonB的转运体(TonB-dependent transporters,TBDTs)完成,TBDTs结合不同形式的铁复合物,通过内膜上的TonB-ExbB-ExbD复合物提供能量完成转运,对其机制的研究一直是微生物基础生命活动研究中的热点问题。近年来新鉴定了一些TBDTs的结构,并对其功能和转运机制有了更深入的研究,对此进行了综述,不仅有助于进一步揭示细菌的铁转运机制,而且有助于寻找新的靶位点以开发新的治疗药物。  相似文献   

9.
Transferrin binding protein A (TbpA) is a TonB-dependent outer membrane protein expressed by pathogenic bacteria for iron acquisition from human transferrin. The N-terminal 160 residues (plug domain) of TbpA were overexpressed in both the periplasm and cytoplasm of Escherichia coli. We found this domain to be soluble and monodisperse in solution, exhibiting secondary structure elements found in plug domains of structurally characterized TonB-dependent transporters. Although the TbpA plug domain is apparently correctly folded, we were not able to observe an interaction with human transferrin by isothermal titration calorimetry or nitrocellulose binding assays. These experiments suggest that the plug domain may fold independently of the beta-barrel, but extracellular loops of the beta-barrel are required for ligand binding.  相似文献   

10.
Nader M  Journet L  Meksem A  Guillon L  Schalk IJ 《Biochemistry》2011,50(13):2530-2540
To get access to iron, Pseudomonas aeruginosa produces the siderophore pyoverdine (PVD), composed of a fluorescent chromophore linked to an octapeptide, and its corresponding outer membrane transporter FpvA. This transporter is composed of three domains: a β-barrel inserted into the membrane, a plug that closes the channel formed by the barrel, and a signaling domain in the periplasm. The plug and the signaling domain are separated by a sequence of five residues called the TonB box, which is necessary for the interaction of FpvA with the inner membrane TonB protein. Genetic deletion of the plug domain resulted in the presence of a β-barrel in the outer membrane unable to bind and transport PVD-Fe. Expression of the soluble plug domain with the TonB box inhibited PVD-(55)Fe uptake most likely through interaction with TonB in the periplasm. A reconstituted FpvA in the bacterial outer membrane was obtained by the coexpression of separately encoded plug and β-barrel domains, each endowed with a signal sequence and a signaling domain. This resulted in polypeptide complementation after secretion across the cytoplasmic membrane. The reconstituted FpvA bound PVD-Fe with the same affinity as wild-type FpvA, indicating that the resulting transporter is correctly folded and reconstituted in the outer membrane. PVD-Fe uptake was TonB-dependent but 75% less efficient compared to wild-type FpvA. These data are consistent with a gated mechanism in which no open channel with a complete removal of the plug domain for PVD-Fe diffusion is formed in FpvA at any point during the uptake cycle.  相似文献   

11.
12.
The pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa translocates ferric-pyoverdine across the outer membrane via an energy consuming mechanism that involves the inner membrane energy transducing complex of TonB-ExbB-ExbD and the proton motive force. We solved the crystal structure of FpvA loaded with iron-free pyoverdine at 3.6 angstroms resolution. The pyoverdine receptor is folded in two domains: a transmembrane 22-stranded beta-barrel domain occluded by an N-terminal domain containing a mixed four-stranded beta-sheet (the plug). The beta-strands of the barrel are connected by long extracellular loops and short periplasmic turns. The iron-free pyoverdine is bound at the surface of the receptor in a pocket lined with aromatic residues while the extracellular loops do not completely cover the pyoverdine binding site. The TonB box, which is involved in intermolecular contacts with the TonB protein of the inner membrane, is observed in an extended conformation. Comparison of this first reported structure of an iron-siderophore transporter from a bacterium other than Escherichia coli with the known structures of the E.coli TonB-dependent transporters reveals a high structural homology and suggests that a common sensing mechanism exists for the iron-loading status in all bacterial iron siderophore transporters.  相似文献   

13.

Background  

Different iron transport systems evolved in Gram-negative bacteria during evolution. Most of the transport systems depend on outer membrane localized TonB-dependent transporters (TBDTs), a periplasma-facing TonB protein and a plasma membrane localized machinery (ExbBD). So far, iron chelators (siderophores), oligosaccharides and polypeptides have been identified as substrates of TBDTs. For iron transport, three uptake systems are defined: the lactoferrin/transferrin binding proteins, the porphyrin-dependent transporters and the siderophore-dependent transporters. However, for cyanobacteria almost nothing is known about possible TonB-dependent uptake systems for iron or other substrates.  相似文献   

14.
TonB and the Gram-negative dilemma   总被引:50,自引:15,他引:35  
TonB protein serves as an energy transducer to couple cytoplasmic membrane energy to high-affinity active transport of iron siderophores and vitamin B12 across the outer membranes of Gram-negative bacteria. The biochemical mechanism of the energy transduction remains to be determined, but important details are already known. TonB is targeted to and anchored in the cytoplasmic membrane by a single membrane-spanning domain and spans the periplasm to physically interact with outer-membrane receptors of the transport ligands. TonB-dependent energy transduction is modulated by ExbB protein, which stabilizes TonB, and possibly by several other proteins including ExbC, ExbD, and TolQ. TonB has a relatively short functional half-life that is accelerated when rates of active transport across the outer membrane are increased. A model that incorporates this information, as well as some tempered speculation, is presented.  相似文献   

15.
16.
Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.  相似文献   

17.
18.
FpvA is the primary outer membrane transporter required for iron acquisition via the siderophore pyoverdine (Pvd) in Pseudomonas aeruginosa. FpvA, like other ferrisiderophore transporters, consists of a membrane-spanning β-barrel occluded by a plug domain. The β-strands of the barrel are connected by large extracellular loops and periplasmic turns. Like some other TonB-dependent transporters, FpvA has a periplasmic domain involved in a signalling cascade that regulates expression of genes required for ferrisiderophore transport. Here, the structures of FpvA in different loading states are analysed in light of mutagenesis data. This analysis highlights the roles of different protein domains in Pvd-Fe uptake and the signalling cascade and reveals a strong correlation between Pvd-Fe transport and activation of the signalling cascade. It is likely that conclusions drawn for FpvA will be relevant to other TonB-dependent ferrisiderophore transport and signalling proteins.  相似文献   

19.
Cells growing in aerobic environments have developed intricate strategies to overcome the scarcity of iron, an essential nutrient. In Gram-negative bacteria, high-affinity iron acquisition requires outer membrane-localized proteins that bind iron chelates at the cell surface and promote their uptake. Transport of bound chelates across the outer membrane depends upon TonB–ExbB–ExbD, a cytoplasmic membrane-localized complex that transduces energy from the proton motive force to high-affinity receptors in the outer membrane. Upon ligand binding to iron chelate receptors, conformational changes are induced, some of which are detected in the periplasm. These structural alterations signal the ligand-loaded status of the receptor and, therefore, the requirement for TonB-dependent energy transduction. Thus, TonB interacts preferentially and directly with ligand-loaded receptors. Such a mechanism ensures the productive use of cellular energy to drive active transport at the outer membrane.  相似文献   

20.
TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that internalize nutrients such as vitamin B12, metal complexes, heme, some carbohydrates, etc. In addition to their transport activity, several TBDTs are also involved in a signalling cascade from the cell surface into the cytoplasm, via their periplasmic signalling domain. Here we report the backbone and side chain resonance assignments of the signalling domain of HasR, a TonB-dependent outer membrane heme transporter from Serratia marcescens as a first step towards its structural study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号