首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Range shift, a widespread response to climate change, will depend on species abilities to withstand warmer climates. However, these abilities may vary within species and such intraspecific variation can strongly impact species responses to climate change. Facing warmer climates, individuals should disperse according to their thermal optimum with consequences for species range shifts. Here, we studied individual dispersal of a reptile in response to climate warming and preferred temperature using a semi‐natural warming experiment. Individuals with low preferred temperatures dispersed more from warmer semi‐natural habitats, whereas individuals with higher preferred temperatures dispersed more from cooler habitats. These dispersal decisions partly matched phenotype‐dependent survival rates in the different thermal habitats, suggesting adaptive dispersal decisions. This process should result into a spatial segregation of thermal phenotypes along species moving ranges which should facilitate local adaptation to warming climates. We therefore call for range shift models including intraspecific variation in thermal phenotype and dispersal decision.  相似文献   

2.
J. A Thomas 《Ecography》1993,16(3):278-284
Analyses of their habitats indicate that 18% of British butterfly species are restricted to the earliest seral stages of ecosystems, whereas the same species occupy later seral stages in central Europe, where spring and summer temperatures are warmer. The microclimates of their British habitats are exceptionally warm, compensating for the cooler climate. Most of these British habitats are also ephemeral, and have long depended on man for their creation and regeneration This poses the question of where these species lived before man created their habitats, roughly 6000 BP, I suggest that they are relics from a period when British summers were warmer than today, and that they avoided extinction when the climate cooled by moving into warm refugia created by prehistoric man within three types of ecosystem If summer temperatures become warmer, these species should return to later seral stages that are commoner and less dependent on man.  相似文献   

3.
Climate warming is likely to shift the range margins of species poleward, but fine‐scale temperature differences near the ground (microclimates) may modify these range shifts. For example, cold‐adapted species may survive in microrefugia when the climate gets warmer. However, it is still largely unknown to what extent cold microclimates govern the local persistence of populations at their warm range margin. We located 99 microrefugia, defined as sites with edge populations of 12 widespread boreal forest understory species (vascular plants, mosses, liverworts and lichens) in an area of ca. 24,000 km2 along the species' southern range margin in central Sweden. Within each population, a logger measured temperature eight times per day during one full year. Using univariate and multivariate analyses, we examined the differences of the populations' microclimates with the mean and range of microclimates in the landscape, and identified the typical climate, vegetation and topographic features of these habitats. Comparison sites were drawn from another logger data set (n = 110), and from high‐resolution microclimate maps. The microrefugia were mainly places characterized by lower summer and autumn maximum temperatures, late snow melt dates and high climate stability. Microrefugia also had higher forest basal area and lower solar radiation in spring and autumn than the landscape average. Although there were common trends across northern species in how microrefugia differed from the landscape average, there were also interspecific differences and some species contributed more than others to the overall results. Our findings provide biologically meaningful criteria to locate and spatially predict potential climate microrefugia in the boreal forest. This opens up the opportunity to protect valuable sites, and adapt forest management, for example, by keeping old‐growth forests at topographically shaded sites. These measures may help to mitigate the loss of genetic and species diversity caused by rear‐edge contractions in a warmer climate.  相似文献   

4.
The habitat associations of individuals underpin the dynamics of species distributions. Broad‐scale gradients in climate can alter habitat associations across species’ geographic ranges, but topographic heterogeneity creates local microclimates which could generate variation in habitat use at finer spatial scales. We examined the selection of microhabitats for egg‐laying by populations of a thermally‐constrained butterfly, the skipper Hesperia comma, across 16 sites with different regional temperatures and topographic microclimates. Using models of thermal microclimate, we examined how the association between eggs and warm bare ground microhabitats varied with ambient temperature, and predicted bare ground associations in 287 existing H. comma populations, to investigate the relative impacts of regional temperatures and topographic microclimates on microhabitat use. Eggs were most strongly associated with bare ground in relatively cool sites, indicating climate‐driven changes in microhabitat use. The majority of temperature variation between study sites was attributable to topographic microclimates rather than regional temperature differences, such that changes in microhabitat associations occurred principally between north‐ and south‐facing slopes within the same region. Predicted microhabitat associations across the UK distribution of H. comma showed that, due to the large temperature differences generated by topography, most of the between‐population variation in microhabitat use occurs locally within 5 km grid squares, with a smaller proportion occurring at a regional level between 5 km squares. Our findings show how microclimatic variation generated by topography alters the habitat associations of populations at fine spatial scales, suggesting that microclimate‐driven changes in habitat suitability could shape species’ distribution dynamics and their responses to environmental change.  相似文献   

5.
Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature‐sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the “macroclimate” (climate at a local scale, m to ha) and the “microclimate” (climate at a fine‐scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9–12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature‐sensitive species under climate change. Selectively logged forests can play a crucial role in the long‐term maintenance of global biodiversity.  相似文献   

6.
Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9°C and reduced maximum temperatures by 3.5°C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species'' ability to move within microhabitats to exploit favourable buffered microclimates.  相似文献   

7.
Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro‐habitats; (2) test the predictive value of so‐called ‘indicator values’; and (3) quantify the shift in micro‐habitat conditions under the influence of climate warming. Location Alpine vegetation 2200–2800 m a.s.l., Swiss central Alps. Methods High‐resolution infra‐red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant‐surface and ground temperatures as well as snow‐melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro‐habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro‐habitats in seasonal mean soil temperature (ΔT = 7.2 K), surface temperature (ΔT = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro‐habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro‐habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro‐climatic conditions in an alpine landscape are associated with local plant species distribution. Semi‐quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre‐scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm‐based model scenarios. While all but the species depending on the very coldest micro‐habitats will find thermally suitable ‘escape’ habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world.  相似文献   

8.
As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate‐shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5–38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate‐controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool‐origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20–60%. Warm‐origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool‐origin taxa are likely to benefit from warming, while warm‐origin taxa may be negatively affected.  相似文献   

9.
Understanding the potential of animals to immediately respond to changing temperatures is imperative for predicting the effects of climate change on biodiversity. Ectothermic animals, such as insects, use behavioural thermoregulation to keep their body temperature within suitable limits. It may be particularly important at warm margins of species occurrence, where populations are sensitive to increasing air temperatures. In the field, we studied thermal requirements and behavioural thermoregulation in low-altitude populations of the Satyrinae butterflies Erebia aethiops, E. euryale and E. medusa. We compared the relationship of individual body temperature with air and microhabitat temperatures for the low-altitude Erebia species to our data on seven mountain species, including a high-altitude population of E. euryale, studied in the Alps. We found that the grassland butterfly E. medusa was well adapted to the warm lowland climate and it was active under the highest air temperatures and kept the highest body temperature of all species. Contrarily, the woodland species, E. aethiops and a low-altitude population of E. euryale, kept lower body temperatures and did not search for warm microclimates as much as other species. Furthermore, temperature-dependence of daily activities also differed between the three low-altitude and the mountain species. Lastly, the different responses to ambient temperature between the low- and high-altitude populations of E. euryale suggest possible local adaptations to different climates. We highlight the importance of habitat heterogeneity for long-term species survival, because it is expected to buffer climate change consequences by providing a variety of microclimates, which can be actively explored by adults. Alpine species can take advantage of warm microclimates, while low-altitude grassland species may retreat to colder microhabitats to escape heat, if needed. However, we conclude that lowland populations of woodland species may be more severely threatened by climate warming because of the unavailability of relatively colder microclimates.  相似文献   

10.
The global distribution of zooplankton community structure is known to follow latitudinal temperature gradients: larger species in cooler, higher latitudinal regions. However, interspecific relationships between temperature and size in zooplankton communities have not been fully examined in terms of temporal variation. To re‐examine the relationship on a temporal scale and the effects of climate control thereon, we investigated the variation in copepod size structure in the eastern and western subarctic North Pacific in 2000–2011. This report presents the first basin‐scale comparison of zooplankton community changes in the North Pacific based on a fully standardized data set obtained from the Continuous Plankton Recorder (CPR) survey. We found an increase in copepod community size (CCS) after 2006–2007 in the both regions because of the increased dominance of large cold‐water species. Sea surface temperature varied in an east–west dipole manner, showing the typical Pacific Decadal Oscillation pattern: cooling in the east and warming in the west after 2006–2007. The observed positive correlation between CCS and sea surface temperature in the western North Pacific was inconsistent with the conventional interspecific temperature–size relationship. We explained this discrepancy by the geographical shift of the upper boundary of the thermal niche, the 9°C isotherm, of large cold‐water species. In the eastern North Pacific, the boundary stretched northeast, to cover a large part of the sampling area after 2006–2007. In contrast, in the western North Pacific, the isotherm location hardly changed and the sampling area remained within its thermal niche throughout the study period, despite the warming that occurred. Our study suggests that while a climate‐induced basin‐scale cool–warm cycle can alter copepod community size and might subsequently impact the functions of the marine ecosystem in the North Pacific, the interspecific temperature–size relationship is not invariant and that understanding region‐specific processes linking climate and ecosystem is indispensable.  相似文献   

11.
Habitat conversion is a major driver of the biodiversity crisis, yet why some species undergo local extinction while others thrive under novel conditions remains unclear. We suggest that focusing on species' niches, rather than traits, may provide the predictive power needed to forecast biodiversity change. We first examine two Neotropical frog congeners with drastically different affinities to deforestation and document how thermal niche explains deforestation tolerance. The more deforestation‐tolerant species is associated with warmer macroclimates across Costa Rica, and warmer microclimates within landscapes. Further, in laboratory experiments, the more deforestation‐tolerant species has critical thermal limits, and a jumping performance optimum, shifted ~2 °C warmer than those of the more forest‐affiliated species, corresponding to the ~3 °C difference in daytime maximum temperature that these species experience between habitats. Crucially, neither species strictly specializes on either habitat – instead habitat use is governed by regional environmental temperature. Both species track temperature along an elevational gradient, and shift their habitat use from cooler forest at lower elevations to warmer deforested pastures upslope. To generalize these conclusions, we expand our analysis to the entire mid‐elevational herpetological community of southern Costa Rica. We assess the climatological affinities of 33 amphibian and reptile species, showing that across both taxonomic classes, thermal niche predicts presence in deforested habitat as well as or better than many commonly used traits. These data suggest that warm‐adapted species carry a significant survival advantage amidst the synergistic impacts of land‐use conversion and climate change.  相似文献   

12.
Species may circumvent the impacts of climate warming if the habitats they use reduce ambient temperature. In this study, we identified which frog species from a tropical montane rain forest in the Philippines may be vulnerable to climate warming. To do so, we selected five anuran species that utilize four breeding habitats and identified the sensitivity and exposure of tadpoles and direct‐developer eggs to heat by measuring their critical thermal maximums (CTmax) and the habitat‐specific temperatures they experience. Our study species included two direct‐developer frogs—one species that lays its eggs on exposed leaves, and another that lays its eggs in ferns—and three species that produce aquatic free‐swimming tadpoles—two stream breeders, and one phytotelm (tree hole) breeder. We compared thermal tolerances derived from microclimates of breeding habitats with tolerances derived from macroclimate (i.e., non‐buffered air temperature taken from the rain forest canopy). We also examined whether differences in CTmax existed across life‐history stages (egg, metamorph/young‐of‐year, and adult) for the two direct‐developer frog species. Habitats buffered ambient temperature and expanded thermal tolerances of all frog species. We found that direct‐developers, however, are more vulnerable to increased temperatures than aquatic breeders—indicated by their high sensitivity to temperature, and exposure to high temperatures. Direct‐developer eggs were more sensitive to warming than both metamorph and adult life‐history stages. Thermally buffered microhabitats may represent the only protection against current and impending climate warming. Our data highlight the importance of considering sensitivity and exposure in unison when deciphering warming vulnerability of frogs.  相似文献   

13.
In the Brazilian Atlantic Rainforest (AF), amphibians (625 species) face habitat degradation leading to stressful thermal conditions that constrain animal activity (e.g., foraging and reproduction). Data on thermal ecology for these species are still scarce. We tested the hypothesis that environmental occupation affects the thermal tolerance of amphibian species more than their phylogenetic relationships. We evaluated patterns of thermal tolerance of 47 amphibian species by assessing critical thermal maxima and warming tolerances, relating these variables with ecological covariates (e.g., adult macro‐ and microhabitat and site of larval development). We used mean and maximum environmental temperature, ecological covariates, and morphological measurements in the phylogenetic generalized least squares model selection to evaluate which traits better predict thermal tolerance. We did not recover phylogenetic signal under a Brownian model; our results point to a strong association between critical thermal maxima and habitat and development site. Forest species were less tolerant to warm temperatures than open area or generalist species. Species with larvae that develop in lentic environment were more tolerant than those in lotic ones. Thus, species inhabiting forest microclimates are more vulnerable to the synergistic effect of habitat loss and climate change. We use radar charts as a quick evaluation tool for thermal risk diagnoses using aspects of natural history as axes.  相似文献   

14.
Aim Animal monitoring programmes have allowed analyses of population trends, most of which now comment on the possible effect of global climate change. However, the relationship between the interspecific variation in population trends and species traits, such as habitat preferences, niche breadth or distribution patterns, has received little attention, in spite of its usefulness in the construction of ecological generalizations. The objectives of this study were: (1) to determine whether there are characteristics shared among species with upwards or downwards trends, and (2) to assess whether population changes agree with what could be expected under global warming (a decrease in species typical of cooler environments). Location The Spanish part of the Iberian Peninsula (c. 500,000 km2) in the south‐western part of the Mediterranean Basin. Methods We modelled recent breeding population changes (1996–2004), in areas without apparent land use changes, for 57 common passerine birds with species‐specific ecological and distributional patterns as explanatory variables. Results One‐half of these species have shown a generalized pattern towards the increase of their populations, while only one‐tenth showed a significant decrease. One half (54%) of the interspecific variability in yearly population trends is explained considering species‐specific traits. Species showing more marked increases preferred wooded habitats, were habitat generalists and occupied warmer and wetter areas, while moderate decreases were found for open country habitats in drier areas. Main conclusions The coherent pattern in population trends we found disagrees with the proposed detrimental effect of global warming on bird populations of western Europe, which is expected to be more intense in bird species inhabiting cooler areas and habitats. Such a pattern suggests that factors other than the increase in temperature may be brought to discussions on global change as relevant components to explain recent changes in biodiversity.  相似文献   

15.
Climate change‐induced species range shift may pose severe challenges to species conservation. The Qinghai‐Tibet Plateau is the highest and biggest plateau, and also one of the most sensitive areas to global warming in the world, which provides important shelters for a unique assemblage of species. Here, ecological niche‐based model was employed to project the potential distributions of 59 key rare and endangered species under three climate change scenarios (RCP2.6, RCP4.5 and RCP8.5) in Qinghai Province. I assessed the potential impacts of climate change on these key species (habitats, species richness and turnover) and effectiveness of nature reserves (NRs) in protecting these species. The results revealed that that climate change would shrink the geographic ranges of about a third studied species and expand the habitats for two thirds of these species, which would thus alter the conservation value of some local areas and conservation effectiveness of some NRs in Qinghai Province. Some regions require special attention as they are expected to experience significant changes in species turnover, species richness or newly colonized species in the future, including Haidong, Haibei and Haixi junctions, the southwestern Yushu, Qinghai Nuomuhong Provincial NR, Qinghai Qaidam and Haloxylon Forest NR. The Haidong and the eastern part of Haibei, are projected to have high species richness and conservation value in both current and future, but they are currently not protected, and thus require extra protection in the future. The results could provide the first basis on the high latitude region to formulate biodiversity conservation strategies on climate change adaptation.  相似文献   

16.
Temperature increases because of climate change are expected to cause expansions at the high latitude margins of species distributions, but, in practice, fragmented landscapes act as barriers to colonization for most species. Understanding how species distributions will shift in response to climate change therefore requires techniques that incorporate the combined effects of climate and landscape‐scale habitat availability on colonization rates. We use a metapopulation model (Incidence Function Model, IFM) to test effects of fine‐scale habitat use on patterns and rates of range expansion by the butterfly Hesperia comma. At its northern range margin in Britain, this species has increased its breadth of microhabitat use because of climate warming, leading to increased colonization rates. We validated the IFM by reconstructing expansions in five habitat networks between 1982 and 2000, before using it to predict metapopulation dynamics over 100 yr, for three scenarios based on observed changes to habitat use. We define the scenarios as “cold‐world” (only hot, south‐facing 150–250° hillsides are deemed warm enough), “warm‐world” in which 100–300° hillsides can be populated, and “hot‐world”, where the background climate is warm enough to enable use of all aspects (as increasingly observed). In the simulations, increased habitat availability in the hot‐world scenario led to faster range expansion rates, and to long‐term differences in distribution size and pattern. Thus, fine‐scale changes in the distribution of suitable microclimates led to landscape‐scale changes in population size and colonization rate, resulting in coarse‐scale changes to the species distribution. Despite use of a wider range of habitats associated with climate change, H. comma is still expected to occupy a small fraction of available habitat in 100 yr. The research shows that metapopulation models represent a potential framework to identify barriers to range expansion, and to predict the effects of environmental change or conservation interventions on species distributions and persistence.  相似文献   

17.
Abstract 1. The present study used the mountain specialist butterfly Parnassius apollo as a model system to investigate how climate change may alter habitat requirements for species at their warm range margins. 2. Larval habitat use was recorded in six P. apollo populations over a 700 m elevation gradient in the Sierra de Guadarrama (central Spain). Larvae used four potential host species (Sedum spp.) growing in open areas amongst shrubs. 3. Parnassius apollo host‐plant and habitat use changed as elevation increased: the primary host shifted from Sedum amplexicaule to Sedum brevifolium, and larvae selected more open microhabitats (increased bare ground and dead vegetation, reduced vegetation height and shrub cover), suggesting that hotter microhabitats are used in cooler environments. 4. Larval microhabitat selection was significantly related to ambient temperature. At temperatures lower than 27 °C, larvae occupied open microhabitats that were warmer than ambient temperature, versus more shaded microhabitats that were cooler than ambient conditions when temperature was higher than 27 °C. 5. Elevational changes in phenology influenced the temperatures experienced by larvae, and could affect local host‐plant favourability. 6. Habitat heterogeneity appears to play an important role in P. apollo larval thermoregulation, and may become increasingly important in buffering populations of this and other insect species against climatic variation.  相似文献   

18.
Predicting the effects of global climate change on species interactions has remained difficult because there is a spatiotemporal mismatch between regional climate models and microclimates experienced by organisms. We evaluated resource selection in a predominant ectothermic predator using a modeling approach that permitted us to assess the importance of habitat structure and local real‐time air temperatures within the same modeling framework. We radio‐tracked 53 western ratsnakes (Pantherophis obsoletus) from 2010 to 2013 in central Missouri, USA, at study sites where this species has previously been linked to prey population demographics. We used Bayesian discrete choice models within an information theoretic framework to evaluate the seasonal effects of fine‐scale vegetation structure and thermal conditions on ratsnake resource selection. Ratsnake resource selection was influenced most by canopy cover, canopy cover heterogeneity, understory cover, and air temperature heterogeneity. Ratsnakes generally preferred habitats with greater canopy heterogeneity early in the active season, and greater temperature heterogeneity later in the season. This seasonal shift potentially reflects differences in resource requirements and thermoregulation behavior. Predicted patterns of space use indicate that ratsnakes preferentially selected open habitats in spring and early summer and forest–field edges throughout the active season. Our results show that downscaled temperature models can be used to enhance our understanding of animal resource selection at scales that can be addressed by managers. We suggest that conservation of snakes or their prey in a changing climate will require consideration of fine‐scale interactions between local air temperatures and habitat structure.  相似文献   

19.
20.
Rugged topography affects species distributions and community composition by creating contrasting mesic (cool, moist) and xeric (warm, dry) microclimates on adjacent slopes. This microclimatic heterogeneity is thought to have contributed to species survival during past climate fluctuations. Within a rugged and botanically rich region, we asked what functional, distributional, and/or biogeographic traits distinguished the species significantly associated with xeric or mesic microclimates. For each of 236 species in 4773 plots in the Klamath‐Siskiyou Mountains, we tested for significant associations with mesic or xeric topographic microclimates inferred from high‐resolution topographic variables. For the subset of species showing significant associations, we then compared their functional traits, biogeographic origins, and macroclimatic attributes to those of other species. We also tested the dependence of topographic associations on elevation, canopy cover, and soil type. Many species in the region (40%) showed significant tendencies to be found only in either mesic or xeric topography. ‘Mesic’ species tended to be of northern biogeographic origin and to have geographic ranges with higher mean precipitation; ‘xeric’ species had the opposite attributes. Species occurred more often in mesic microclimates when they occurred on low‐nutrient serpentine soils, and were more often found in xeric microclimates at high elevations. Functional traits such as specific leaf area were not significant predictors of species association with topographic microclimate. Biogeographic origins and the mean precipitation (rather than temperature) of species geographic ranges are the best indicators of species that are found in cool/moist northerly or hot/dry southerly microclimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号