首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The major aim of tertiary structure prediction is to obtain protein models with the highest possible accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted secondary structures as input, and all of these methods may significantly benefit from more accurate secondary structure predictions. Although there are many different secondary structure prediction methods available in the literature, their cross-validated prediction accuracy is generally <80%. In order to increase the prediction accuracy, we developed a novel hybrid algorithm called Consensus Data Mining (CDM) that combines our two previous successful methods: (1) Fragment Database Mining (FDM), which exploits the Protein Data Bank structures, and (2) GOR V, which is based on information theory, Bayesian statistics, and multiple sequence alignments (MSA). In CDM, the target sequence is dissected into smaller fragments that are compared with fragments obtained from related sequences in the PDB. For fragments with a sequence identity above a certain sequence identity threshold, the FDM method is applied for the prediction. The remainder of the fragments are predicted by GOR V. The results of the CDM are provided as a function of the upper sequence identities of aligned fragments and the sequence identity threshold. We observe that the value 50% is the optimum sequence identity threshold, and that the accuracy of the CDM method measured by Q(3) ranges from 67.5% to 93.2%, depending on the availability of known structural fragments with sufficiently high sequence identity. As the Protein Data Bank grows, it is anticipated that this consensus method will improve because it will rely more upon the structural fragments.  相似文献   

2.
Xu D  Zhang Y 《Proteins》2012,80(7):1715-1735
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field.  相似文献   

3.
Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.  相似文献   

4.
MOTIVATION: Knowledge-based potentials are valuable tools for protein structure modeling and evaluation of the quality of the structure prediction obtained by a variety of methods. Potentials of such type could be significantly enhanced by a proper exploitation of the evolutionary information encoded in related protein sequences. The new potentials could be valuable components of threading algorithms, ab-initio protein structure prediction, comparative modeling and structure modeling based on fragmentary experimental data. RESULTS: A new potential for scoring local protein geometry is designed and evaluated. The approach is based on the similarity of short protein fragments measured by an alignment of their sequence profiles. Sequence specificity of the resulting energy function has been compared with the specificity of simpler potentials using gapless threading and the ability to predict specific geometry of protein fragments. Significant improvement in threading sensitivity and in the ability to generate sequence-specific protein-like conformations has been achieved.  相似文献   

5.
Park H  Seok C 《Proteins》2012,80(8):1974-1986
Contemporary template-based modeling techniques allow applications of modeling methods to vast biological problems. However, they tend to fail to provide accurate structures for less-conserved local regions in sequence even when the overall structure can be modeled reliably. We call these regions unreliable local regions (ULRs). Accurate modeling of ULRs is of enormous value because they are frequently involved in functional specificity. In this article, we introduce a new method for modeling ULRs in template-based models by employing a sophisticated loop modeling technique. Combined with our previous study on protein termini, the method is applicable to refinement of both loop and terminus ULRs. A large-scale test carried out in a blind fashion in CASP9 (the 9th Critical Assessment of techniques for protein structure prediction) shows that ULR structures are improved over initial template-based models by refinement in more than 70% of the successfully detected ULRs. It is also notable that successful modeling of several long ULRs over 12 residues is achieved. Overall, the current results show that a careful application of loop and terminus modeling can be a promising tool for model refinement in template-based modeling.  相似文献   

6.
Membrane proteins (MPs) have become a major focus in structure prediction, due to their medical importance. There is, however, a lack of fast and reliable methods that specialize in the modeling of MP loops. Often methods designed for soluble proteins (SPs) are applied directly to MPs. In this article, we investigate the validity of such an approach in the realm of fragment‐based methods. We also examined the differences in membrane and soluble protein loops that might affect accuracy. We test our ability to predict soluble and MP loops with the previously published method FREAD. We show that it is possible to predict accurately the structure of MP loops using a database of MP fragments (0.5–1 Å median root‐mean‐square deviation). The presence of homologous proteins in the database helps prediction accuracy. However, even when homologues are removed better results are still achieved using fragments of MPs (0.8–1.6 Å) rather than SPs (1–4 Å) to model MP loops. We find that many fragments of SPs have shapes similar to their MP counterparts but have very different sequences; however, they do not appear to differ in their substitution patterns. Our findings may allow further improvements to fragment‐based loop modeling algorithms for MPs. The current version of our proof‐of‐concept loop modeling protocol produces high‐accuracy loop models for MPs and is available as a web server at http://medeller.info/fread . Proteins 2014; 82:175–186. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Predicting accurate fragments from sequence has recently become a critical step for protein structure modeling, as protein fragment assembly techniques are presently among the most efficient approaches for de novo prediction. A key step in these approaches is, given the sequence of a protein to model, the identification of relevant fragments - candidate fragments - from a collection of the available 3D structures. These fragments can then be assembled to produce a model of the complete structure of the protein of interest. The search for candidate fragments is classically achieved by considering local sequence similarity using profile comparison, or threading approaches. In the present study, we introduce a new profile comparison approach that, instead of using amino acid profiles, is based on the use of predicted structural alphabet profiles, where structural alphabet profiles contain information related to the 3D local shapes associated with the sequences. We show that structural alphabet profile-profile comparison can be used efficiently to retrieve accurate structural fragments, and we introduce a fully new protocol for the detection of candidate fragments. It identifies fragments specific of each position of the sequence and of size varying between 6 and 27 amino-acids. We find it outperforms present state of the art approaches in terms (i) of the accuracy of the fragments identified, (ii) the rate of true positives identified, while having a high coverage score. We illustrate the relevance of the approach on complete target sets of the two previous Critical Assessment of Techniques for Protein Structure Prediction (CASP) rounds 9 and 10. A web server for the approach is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/SAFrag.  相似文献   

8.
MOTIVATION: As protein structure database expands, protein loop modeling remains an important and yet challenging problem. Knowledge-based protein loop prediction methods have met with two challenges in methodology development: (1) loop boundaries in protein structures are frequently problematic in constructing length-dependent loop databases for protein loop predictions; (2) knowledge-based modeling of loops of unknown structure requires both aligning a query loop sequence to loop templates and ranking the loop sequence-template matches. RESULTS: We developed a knowledge-based loop prediction method that circumvents the need of constructing hierarchically clustered length-dependent loop libraries. The method first predicts local structural fragments of a query loop sequence and then structurally aligns the predicted structural fragments to a set of non-redundant loop structural templates regardless of the loop length. The sequence-template alignments are then quantitatively evaluated with an artificial neural network model trained on a set of predictions with known outcomes. Prediction accuracy benchmarks indicated that the novel procedure provided an alternative approach overcoming the challenges of knowledge-based loop prediction. AVAILABILITY: http://cmb.genomics.sinica.edu.tw  相似文献   

9.
Rangwala H  Karypis G 《Proteins》2008,72(3):1005-1018
The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporating predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein structures, this article focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel functions. Our comprehensive empirical study shows superior results compared with the profile-to-profile scoring schemes. We also show that for protein pairs with low sequence similarity (less than 12% sequence identity) these new local structural features alone or in conjunction with profile-based information lead to alignments that are considerably accurate than those obtained by schemes that use only profile and/or predicted secondary structure information.  相似文献   

10.
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment‐based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ~25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root‐mean‐square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments .  相似文献   

11.
MOTIVATION: A large body of evidence suggests that protein structural information is frequently encoded in local sequences-sequence-structure relationships derived from local structure/sequence analyses could significantly enhance the capacities of protein structure prediction methods. In this paper, the prediction capacity of a database (LSBSP2) that organizes local sequence-structure relationships encoded in local structures with two consecutive secondary structure elements is tested with two computational procedures for protein structure prediction. The goal is twofold: to test the folding hypothesis that local structures are determined by local sequences, and to enhance our capacity in predicting protein structures from their amino acid sequences. RESULTS: The LSBSP2 database contains a large set of sequence profiles derived from exhaustive pair-wise structural alignments for local structures with two consecutive secondary structure elements. One computational procedure makes use of the PSI-BLAST alignment program to predict local structures for testing sequence fragments by matching the testing sequence fragments onto the sequence profiles in the LSBSP2 database. The results show that 54% of the test sequence fragments were predicted with local structures that match closely with their native local structures. The other computational procedure is a filter system that is capable of removing false positives as possible from a set of PSI-BLAST hits. An assessment with a large set of non-redundant protein structures shows that the PSI-BLAST + filter system improves the prediction specificity by up to two-fold over the prediction specificity of the PSI-BLAST program for distantly related protein pairs. Tests with the two computational procedures above demonstrate that local sequence-structure relationships can indeed enhance our capacity in protein structure prediction. The results also indicate that local sequences encoded with strong local structure propensities play an important role in determining the native state folding topology.  相似文献   

12.
Riboswitches are elements of mRNA that regulate gene expression by undergoing structural changes upon binding of small ligands. Although the structures of several riboswitches have been solved with their ligands bound, the ligand-free states of only a few riboswitches have been characterized. The ligand-free state is as important for the functionality of the riboswitch as the ligand-bound form, but the ligand-free state is often a partially folded structure of the RNA, with conformational heterogeneity that makes it particularly challenging to study. Here, we present models of the ligand-free state of a thiamine pyrophosphate riboswitch that are derived from a combination of complementary experimental and computational modeling approaches. We obtain a global picture of the molecule using small-angle X-ray scattering data and use an RNA structure modeling software, MC-Sym, to fit local structural details to these data on an atomic scale. We have used two different approaches to obtaining these models. Our first approach develops a model of the RNA from the structures of its constituent junction fragments in isolation. The second approach treats the RNA as a single entity, without bias from the structure of its individual constituents. We find that both approaches give similar models for the ligand-free form, but the ligand-bound models differ for the two approaches, and only the models from the second approach agree with the ligand-bound structure known previously from X-ray crystallography. Our models provide a picture of the conformational changes that may occur in the riboswitch upon binding of its ligand. Our results also demonstrate the power of combining experimental small-angle X-ray scattering data with theoretical structure prediction tools in the determination of RNA structures beyond riboswitches.  相似文献   

13.

Background  

Short fragments of proteins are fundamental starting points in various structure prediction applications, such as in fragment based loop modeling methods but also in various full structure build-up procedures. The applicability and performance of these approaches depend on the availability of short fragments in structure databanks.  相似文献   

14.
A molecular interaction library modeling favorable non-bonded interactions between atoms and molecular fragments is considered. In this paper, we represent the structure of the interaction library by a network diagram, which demonstrates that the underlying prediction model obtained for a molecular fragment is multi-layered. We clustered the molecular fragments into four groups by analyzing the pairwise distances between the molecular fragments. The distances are represented as an unrooted tree, in which the molecular fragments fall into four groups according to their function. For each fragment group, we modeled a group-specific a priori distribution with a Dirichlet distribution. The group-specific Dirichlet distributions enable us to derive a large population of similar molecular fragments that vary only in their contact preferences. Bayes' theorem then leads to a population distribution of the posterior probability vectors referred to as a "Dickey-Savage"-density. Two known methods for approximating multivariate integrals are applied to obtain marginal distributions of the Dickey-Savage density. The results of the numerical integration methods are compared with the simulated marginal distributions. By studying interactions between the protein structure of cyclohydrolase and its ligand guanosine-5'-triphosphate, we show that the marginal distributions of the posterior probabilities are more informative than the corresponding point estimates.  相似文献   

15.
The computer program LUDI for automated structure-based drug design is described. The program constructs possible new ligands for a given protein of known three-dimensional structure. This novel approach is based upon rules about energetically favourable non-bonded contact geometries between functional groups of the protein and the ligand which are derived from a statistical analysis of crystal packings of organic molecules. In a first step small fragments are docked into the protein binding site in such a way that hydrogen bonds and ionic interactions can be formed with the protein and hydrophobic pockets are filled with lipophilic groups of the ligands. The program can then append further fragments onto a previously positioned fragments or onto an already existing ligand (e.g., a lead structure that one seeks to improve). It is also possible to link several fragments together by bridge fragments to form a complete molecule. All putative ligands retrieved or constructed by LUDI are scored. We use a simple scoring function that was fitted to experimentally determined binding constants of protein–ligand complexes. LUCI is a very fast program with typical execution times of 1–5 min on a work station and is therefore suitable for interactive usage.  相似文献   

16.
17.
Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan''s crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures.  相似文献   

18.
High resolution, contemporary data on human population distributions are vital for measuring impacts of population growth, monitoring human-environment interactions and for planning and policy development. Many methods are used to disaggregate census data and predict population densities for finer scale, gridded population data sets. We present a new semi-automated dasymetric modeling approach that incorporates detailed census and ancillary data in a flexible, “Random Forest” estimation technique. We outline the combination of widely available, remotely-sensed and geospatial data that contribute to the modeled dasymetric weights and then use the Random Forest model to generate a gridded prediction of population density at ~100 m spatial resolution. This prediction layer is then used as the weighting surface to perform dasymetric redistribution of the census counts at a country level. As a case study we compare the new algorithm and its products for three countries (Vietnam, Cambodia, and Kenya) with other common gridded population data production methodologies. We discuss the advantages of the new method and increases over the accuracy and flexibility of those previous approaches. Finally, we outline how this algorithm will be extended to provide freely-available gridded population data sets for Africa, Asia and Latin America.  相似文献   

19.
MOTIVATION: Knots in polypeptide chains have been found in very few proteins, and consequently should be generally avoided in protein structure prediction methods. Most effective structure prediction methods do not model the protein folding process itself, but rather seek only to correctly obtain the final native state. Consequently, the mechanisms that prevent knots from occurring in native proteins are not relevant to the modeling process, and as a result, knots can occur with significantly higher frequency in protein models. Here we describe Knotfind, a simple algorithm for knot detection that is fast enough for structure prediction, where tens or hundreds of thousands of conformations may be sampled during the course of a prediction. We have used this algorithm to characterize knots in large populations of model structures generated for targets in CASP 5 and CASP 6 using the Rosetta homology-based modeling method. RESULTS: Analysis of CASP5 models suggested several possible avenues for introduction of knots into these models, and these insights were applied to structure prediction in CASP 6, resulting in a significant decrease in the proportion of knotted models generated. Additionally, using the knot detection algorithm on structures in the Protein Data Bank, a previously unreported deep trefoil knot was found in acetylornithine transcarbamylase. AVAILABILITY: The Knotfind algorithm is available in the Rosetta structure prediction program at http://www.rosettacommons.org.  相似文献   

20.
Nonribosomal peptide synthetases (NRPSs) are large, multidomain proteins that are involved in the biosynthesis of an array of secondary metabolites. We report the structure of the third adenylation domain from the siderophore-synthesizing NRPS, SidN, from the endophytic fungus Neotyphodium lolii. This is the first structure of a eukaryotic NRPS domain, and it reveals a large binding pocket required to accommodate the unusual amino acid substrate, Nδ-cis-anhydromevalonyl-Nδ-hydroxy-l-ornithine (cis-AMHO). The specific activation of cis-AMHO was confirmed biochemically, and an AMHO moiety was unambiguously identified as a component of the fungal siderophore using mass spectroscopy. The protein structure shows that the substrate binding pocket is defined by 17 amino acid residues, in contrast to both prokaryotic adenylation domains and to previous predictions based on modeling. Existing substrate prediction methods for NRPS adenylation domains fail for domains from eukaryotes due to the divergence of their signature sequences from those of prokaryotes. Thus, this new structure will provide a basis for improving prediction methods for eukaryotic NRPS enzymes that play important and diverse roles in the biology of fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号