首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Striking conservation in various organisms suggests that cellular nucleic acid binding protein (CNBP) plays a fundamental biological role across different species. Recently, it was reported that CNBP is required for forebrain formation during chick and mouse embryogenesis. In this study, we have used the zebrafish model system to expand and contextualize the basic understanding of the molecular mechanisms of CNBP activity during vertebrate head development. We show that zebrafish cnbp is expressed in the anterior CNS in a similar fashion as has been observed in early chick and mouse embryos. Using antisense morpholino oligonucleotide knockdown assays, we show that CNBP depletion causes forebrain truncation while trunk development appears normal. A substantial reduction in cell proliferation and an increase in cell death were observed in the anterior regions of cnbp morphant embryos, mainly within the cnbp expression territory. In situ hybridization assays show that CNBP depletion does not affect CNS patterning while it does cause depletion of neural crest derivatives. Our data suggest an essential role for CNBP in mediating neural crest expansion by controlling proliferation and cell survival rather than via a cell fate switch during rostral head development. This possible role of CNBP may not only explain the craniofacial anomalies observed in zebrafish but also those reported for mice and chicken and, moreover, demonstrates that CNBP plays an essential and conserved role during vertebrate head development.  相似文献   

4.
The activity of transglutaminase (TGase), an enzyme responsible for polyamine conjugation to proteins, was analyzed in relationship to developmental cell death (DCD) during the flower life span stages of the tobacco (Nicotiana tabacum) corolla. As the DCD exhibits an acropetal gradient, TGase was studied in corolla proximal, medial, and distal parts. TGase was immunorecognized by three TGase antibodies; the main 58-kD band decreased during corolla life, whereas a 38-kD band localized progressively from basal to distal parts. The former was present in the soluble, microsomal, plastidial (together with the 38-kD band), and cell wall fractions. The endogenous TGase activity increased during DCD reaching a maximum soon after the corolla opening. The activity maximum shifted from proximal to distal part, preceding the DCD acropetal pattern. A similar activity increase was observed by the exogenous TGase substrate (histidine(6)-Xpr-green fluorescent protein). Subcellular activities were detected in (1) the microsomes, where TGase activity is in general higher in the proximal part, peaking at the corolla opening; (2) the soluble fraction, where it is present only in the proximal part at senescence; (3) the plastids, where it shows an increasing trend; and (4) cell walls, prevailing in the distal part and progressively increasing. These data suggest a relationship between DCD and TGase; the latter, possibly released in the cell wall through the Golgi vesicles, could cooperate to cell wall strengthening, especially at the abscission zone and possibly during corolla shape change. The plastid TGase, stabilizing the photosystems, could sustain the energy requirements for the senescence progression.  相似文献   

5.
6.
Molecular and genetic analyses have shown that the Arabidopsis thaliana gene SUPERMAN (SUP) has at least two functions in Arabidopsis flower development. SUP is necessary to control the correct distribution of cells with either a stamen or carpel fate, and is essential for proper outgrowth of the ovule outer integument. Both these functions indicate a role for SUP in cell proliferation. To study the function of the Arabidopsis SUP gene in more detail, we over-expressed the SUP gene in petunia and tobacco in a tissue-specific manner. The petunia FLORAL BINDING PROTEIN 1 (FBP1) gene promoter was used to restrict the expression of SUP to petals and stamens. The development of petals and stamens was severely affected in both petunia and tobacco plants over-expressing SUP. Petals remained small and did not unfold, resulting in closed flowers. Stamen filaments were thin and very short. Detailed analysis of these floral organs from the petunia transformants showed that cell expansion was dramatically reduced without affecting cell division. These results reveal a novel activity for SUP as a regulator of cell expansion.  相似文献   

7.
RSK2, an ERK downstream kinase, is a novel mediator of skeletal muscle cell differentiation through its regulation of NFAT3 activity. We found that the N-terminal (amino acids (aa) 1-68) and C-terminal (aa 416-674) kinase domains of RSK2 directly interacted with nuclear localization signal 1, the Ser/Pro repeat, and the polyproline domains (aa 261-365) of NFAT3. Upon A23187 stimulation, RSK2 induced nuclear localization of NFAT3. RSK2 phosphorylated NFAT3 in vitro (Km=3.559 microM), and activation of NFAT3 by RSK2 enhanced the promoter activity of NFAT3 downstream target genes in vivo. Furthermore, nuclear accumulation of NFAT3 was attenuated markedly in RSK2-/- cells compared with wild-type RSK2+/+ cells. Notably, RSK2 and NFAT3 induced a significant differentiation of C2C12 myoblasts to multinucleated myotubes. Multinucleated myotube differentiation was inhibited by small interfering RNA against RSK2, ERK1/2, or NFAT3. These results demonstrate that RSK2 is an important kinase for NFAT3 in mediating myotube differentiation.  相似文献   

8.
The tobacco NtSET1 gene encodes a member of the SUV39H family of histone methyltransferases. Ectopic expression of NtSET1 causes an increase in methylated histone H3 lysine 9 and abnormal chromosome segregation in tobacco suspension cells, and inhibits tobacco plant growth. Here we show that the inhibition of plant growth was caused by reduced cell expansion as well as by abnormal cell division and differentiation. We found that deletion of the C-terminally located catalytic domain of the protein abolished the ectopic effects of NtSET1 on plant growth. Our results indicate that histone H3 lysine 9 methylation is a critical mark of epigenetic control for plant development.  相似文献   

9.
To gain insight into presenilin-1 (PS1) structural aspects, we explored the structure–function relationship of its N- and C-terminal (NTF and CTF, respectively) complexes. We demonstrated that both NTF and CTF act as independent but inter-changing binding units capable of binding each other (NTF/CTF) or their homologues (NTF/NTF; CTF/CTF). The Alzheimer’s disease-associated PS1 mutations Y115H and M146L do not affect their ability to hetero- and/or homodimerize, thus conserving their basic integrity and function(s). These results suggest that PS1 associates intra-molecularly to form higher order complexes, which may be needed for endoproteolytic cleavage and/or γ-secretase-associated activity.  相似文献   

10.
Although mature citrus fruits [ Citrus sinensis (L.) Osbeck cv. Shamouti] did not abscise at the peduncle-shoot abscission zone (AZ–A) when incubated in ethylene environment, abscission processes did occur in a limited number of cell layers situated in the inner bark, the starch sheath region, and in the pith of AZ–A. These processes were regulated by 2,4-D and ethylene treatments. Cells responding to the "separation processes", particularly in the ethylene treatment, underwent either (a) cell wall swelling, dissolving and breakdown, or (b) growth and expansion in a radial plane. Further away from the dissolving area, the response of some cells of the mid and outer bark took the form of divisions or growth in a circumferential plane, while other cells remained unchanged. Non-responding tissues of the outer bark formed a "sleeve" of undissolved cells, and the vascular cylinder produced no abscission in AZ–A. It is concluded that the partial cell wall dissolution in AZ–A explains the increased activity of cellulase and polygalacturonase in the non-abscising AZ–A of the mature fruit (Greenberg et al. 1975. Physiol. Plant. 37: 1–7).  相似文献   

11.
Wnt2b controls retinal cell differentiation at the ciliary marginal zone   总被引:5,自引:0,他引:5  
The ciliary marginal zone of the vertebrate retina contains undifferentiated progenitor cells that continue to proliferate and add new neurons and glia peripherally during the embryonic stages - even after the formation of a functional retina. To understand the molecular mechanism that controls the prolonged progenitor cell proliferation in the ciliary marginal zone, we employed a candidate molecule approach, focusing on Wnt2b (formerly know as Wnt13), which is expressed in the marginal most tip of the retina. Frizzled 4 and 5, seven-pass transmembrane Wnt receptors, were expressed in the peripheral and central part of the retina, respectively. LEF1, a downstream Wnt signaling component, was expressed at high levels in the ciliary marginal zone with expression gradually decreasing towards the central retina. The LEF1-expressing region, which is where Wnt signaling is supposedly activated, expressed a set of molecular markers that are characteristic of the progenitor cells in the ciliary marginal zone. Overexpression of Wnt2b by use of in ovo electroporation in the central retina inhibited neuronal differentiation and induced the progenitor cell markers. Blocking of the Wnt downstream signaling pathway by a dominant-negative LEF1 inhibited proliferation of the cells in the marginal area, which resulted in their premature neuronal differentiation. The progenitor cells in the ciliary marginal zone differentiated into all the neuronal and glial cell types when cultured in vitro, and they proliferated for a longer period than did centrally located progenitor cells that underwent a limited number of cell divisions. In addition, the proliferation of these progenitor cells was promoted in the presence of Wnt2b. These results suggest that Wnt2b functions to maintain undifferentiated progenitor cells in the ciliary marginal zone, and thus serves as a putative stem cell factor in the retina.  相似文献   

12.
The process of floral organ abscission in Arabidopsis thaliana can be modulated by ethylene and involves numerous genes contributing to cell separation. One gene that is absolutely required for abscission is INFLORESCENCE DEFICIENT IN ABSCISSION, IDA, as the ida mutant is completely blocked in abscission. To elucidate the genetic pathways regulating floral abscission, molecular markers expressed in the floral abscission zone have been studied in an ida mutant background. Using plants with promoter-reporter gene constructs including promoters of a novel FLORAL ABSCISSION ASSOCIATED gene (FAA) encoding a putative single-stranded binding protein (BASIL), chitinase (CHIT::GUS) and cellulase (BAC::GUS), it is shown that IDA acts in the last steps of the abscission process. These markers, as well as HAESA, encoding a receptor-like kinase, were unaffected in their temporal expression patterns in ida compared with wild-type plants; thus showing that different regulatory pathways are active in the abscission process. In contrast to BASIL, CHIT::GUS and BAC::GUS showed, however, much weaker induction of expression in an ida background, consistent with a reduction in pathogen-associated responses and a lack of total dissolution of cell walls in the mutant. IDA, encoding a putative secreted peptide ligand, and HAESA appeared to have identical patterns of expression in floral abscission zones. Lastly, to address the role of ethylene, IDA::GUS expression in the wild type and the ethylene-insensitive mutant etr1-1 was compared. Similar temporal patterns, yet restricted spatial expression patterns were observed in etr1-1, suggesting that the pathways regulated by IDA and by ethylene act in parallel, but are, to some degree, interdependent.  相似文献   

13.
Corolla life span of undetached flowers of Nicotiana tabacum was divided into stages from the closed corolla (stage 1) through anthesis (stage 5) to death (stage 9). Senescence began around stage 6 in the proximal part, concomitantly with DNA laddering. Nuclear blebbing, DNA laddering, cell wall modification, decline in protein, water, pigment content and membrane integrity were observed during senescence and PCD. Transglutaminase activity was measured as mono- and bis-derivatives of putrescine (mono-PU; bis-PU) and bis-derivatives of spermidine (bis-SD). Bis-derivatives decreased with the progression of senescence, while mono-PU increased during early senescence; derivatives were present in different amounts in the proximal and distal parts of the corolla. In excised flowers, exogenous spermine delayed senescence and PCD, and caused an increase in free and acid-soluble conjugated PA levels. Bis-PU was the most abundant PA-derivative before DNA laddering stage; thereafter, bis-PU generally decreased and mono-PU became the most abundant derivative.  相似文献   

14.
The complete division of labour between the reproductive and somatic cells of the green alga Volvox carteri is controlled by three types of genes. One of these is the regA gene, which controls terminal differentiation of the somatic cells. Here, we examined translational control elements located in the 5' UTR of regA, particularly the eight upstream start codons (AUGs) that have to be bypassed by the translation machinery before regA can be translated. The results of our systematic mutational, structural and functional analysis of the 5' UTR led us to conclude that a ribosome-shunting mechanism--rather than leaky scanning, ribosomal reinitiation, or internal ribosome entry site (IRES)-mediated initiation--controls the translation of regA mRNA. This mechanism, which involves dissociation of the 40S initiation complex from the message, followed by reattachment downstream, in order to bypass a secondary structure block in the mRNA, was validated by deleting the predicted ;landing site' (which prevented regA expression) and inserting a stable 64 nucleotide hairpin just upstream of this site (which did not prevent regA expression). We believe that this is the first report suggesting that translation of an mRNA in a green eukaryote is controlled by ribosome shunting.  相似文献   

15.
The role of MYC proteins in somatic stem and progenitor cells during development is poorly understood. We have taken advantage of a chick in vivo model to examine their role in progenitor cells of the developing neural tube. Our results show that depletion of endogenous MYC in radial glial precursors (RGPs) is incompatible with differentiation and conversely, that overexpression of MYC induces neurogenesis independently of premature or upregulated expression of proneural gene programs. Unexpectedly, the neurogenic function of MYC depends on the integrity of the polarized neural tissue, in contrast to the situation in dissociated RGPs where MYC is mitogenic. Within the polarized RGPs of the neural tube, MYC drives differentiation by inhibiting Notch signaling and by increasing neurogenic cell division, eventually resulting in a depletion of progenitor cells. These results reveal an unexpected role of MYC in the control of stemness versus differentiation of neural stem cells in vivo.  相似文献   

16.
The spatial and temporal activity of the entire and individual promoter domains of the rolA gene of Agrobacterium rhizogenes was investigated and correlated with the distinctive features of the phenotypes of transgenic tobacco plants. The GUS assay was performed in the presence of an oxidative catalyst during the development of transgenic plants expressing chimeric genes containing the -glucuronidase coding sequence under the control of the different promoter domains. In situ hybridization was also used on transgenic plants harbouring rolA under the control of the entire or deleted promoter. This paper demonstrates for the first time that the entire rolA promoter, composed of domains, A, B and C, is silent in seeds, then activated at the onset of germination in the cotyledons and in the elengation zone of the radicle and is finally expressed throughout the vegetative and floral phases. Domains B+C, which were sufficient to induce wrinkled leaves and short internodes, were active in all the stem tissues, but only in the companion cells of the phloem strands of the leaves. Domain C, which specified a dwarf phenotype with normal leaves, was weakly expressed in the stem vascular bundles and in the leaf internal phloem. These results indicate that the vascular bundles are the primary targets for the generation of the short internode phenotype. Furthermore, the local expression of rolA in the stem vascular bundles induced a size reduction of the surrounding parenchyma cells, suggesting the existence of some diffusible factor(s) associated with the expression of the rolA gene.  相似文献   

17.
18.
19.
20.
The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号