首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the mechanism of adenovirus serotype 5 (Ad5)-mediated maturation of bone marrow-derived murine dendritic cells (DC) using (i) Ad5 vectors with wild-type capsid (AdE1 degrees, AdGFP); (ii) Ad5 vector mutant deleted of the fiber C-terminal knob domain (AdGFPDeltaknob); and (iii) capsid components isolated from Ad5-infected cells or expressed as recombinant proteins, hexon, penton, penton base, full-length fiber, fiber knob, and fiber mutants. We found that penton capsomer (penton base linked to its fiber projection), full-length fiber protein, and its isolated knob domain were all capable of inducing DC maturation, whereas no significant DC maturation was observed for hexon or penton base alone. This capacity was severely reduced for AdGFPDeltaknob and for fiber protein deletion mutants lacking the beta-stranded region F of the knob (residues Leu-485-Thr-486). The DC maturation effect was fully retained in a recombinant fiber protein deleted of the HI loop (FiDeltaHI), a fiber (Fi) deletion mutant that failed to trimerize, suggesting that the fiber knob-mediated DC activation did not depend on the integrity of the HI loop and on the trimeric status of the fiber. Interestingly, peptide-pulsed DC that had been stimulated with Ad5 knob protein induced a potent CD8+ T cell response in vivo.  相似文献   

2.
Antibodies against hexon, the major coat protein of adenovirus (Ad), are an important component of the neutralizing activity in serum from naturally infected humans and experimentally infected animals. The mechanisms by which antihexon antibodies neutralize the virus have not been defined. As a model system, murine monoclonal antibodies raised against Ad type 5 (Ad5) were screened for antihexon binding and neutralization activity; one monoclonal antibody, designated 9C12, was selected for further characterization. The minimum ratio of 9C12 to Ad5 required for neutralization was 240 antibody molecules per virus particle, or 1 antibody per hexon trimer. Analysis of antibody-virus complexes by dynamic light scattering and negative-stain electron microscopy (EM) showed that the virus particles were coated with electron-dense material but not aggregated at neutralizing ratios. Cryo-EM image reconstruction of the antibody-virus complex showed that the surface of the virus particle was covered by a meshwork of 9C12 antibody density, consistent with bivalent binding at multiple sites. Confocal analysis revealed that viral attachment, cell entry, and intracellular transport to the nuclear periphery still occur in the presence of neutralizing levels of 9C12. A model is presented for neutralization of Ad by an antihexon antibody in which the hexon capsid is cross-linked by antibodies, thus preventing virus uncoating and nuclear entry of viral DNA.  相似文献   

3.
The efficiency of dendritic cells (DC) as immunotherapeutic vaccines critically depends on optimal delivery of target Ags. Although DC modified by subgroup C type 5 recombinant adenoviruses (rAd5) provide encouraging results, their clinical application is hampered by the need for high viral titers to achieve sufficient gene transfer, due to the lack of the Ad5 fiber receptor. We now demonstrate that rAd5 carrying subgroup B Ad fibers are up to 100-fold more potent than classical rAd5 for gene transfer and expression in human DC, rAd5 with a type 35 fiber (rAd5F35) being the most efficient vector. This improvement relates to a greater and faster virus entry and to an increased transgene expression especially following DC maturation. Furthermore, these new vectors possess enhanced synergistic effects with other activation signals to trigger DC maturation. Consequently, rAd5F35-infected DC engineered to express the gp100 melanoma-associated Ag largely exceed rAd5-infected DC in activating gp100-specific CTL. Finally, the DC infection pattern of rAd5F35 is fully conserved when DC are in the vicinity of primary skin-derived fibroblasts, suggesting this vector as a candidate for in vivo targeting of DC. Thus, subgroup B fiber-modified rAd5 constitute a major breakthrough in the exploitation of ex vivo rAd-targeted DC as clinically relevant vaccines and may also be suitable for in vivo genetic modification of DC.  相似文献   

4.
5.
Although replication-incompetent recombinant adenovirus (rAd) type 5 is a potent vaccine vector for stimulating T and B cell responses, high seroprevalence of adenovirus type 5 (Ad5) within human populations may limit its clinical utility. Therefore, alternative adenovirus serotypes have been studied as vaccine vectors. In this study, we characterized the ability of rAd5 and rAd35 to infect and induce maturation of human CD11c(+) myeloid dendritic cells (MDCs) and CD123(+) plasmacytoid dendritic cells (PDCs), and their ability to stimulate Ag-specific T cells. Both MDCs and PDCs were found to express the primary receptor for Ad35 (CD46) but not Ad5 (coxsackie-adenovirus receptor; CAR). Both dendritic cell (DC) subsets were also more susceptible to rAd35 than to rAd5. MDCs were more susceptible to both rAd35 and rAd5 than were PDCs. Whereas rAd35 used CD46 for entry into DCs, entry of rAd5 may be through a CAR-independent pathway. Exposure to rAd35 but not rAd5 induced high levels of IFN-alpha in PDCs and phenotypic differentiation in both DC subsets. MDCs and PDCs exposed to either rAd5 or rAd35 encoding for CMV pp65 were able to present pp65 and activate CMV-specific memory CD8(+) and CD4(+) T cells in a dose-dependent manner, but MDCs stimulated the highest frequencies of pp65-specific T cells. Responding T cells expressed multiple functions including degranulation (CD107a surface mobilization) and production of IFN-gamma, IL-2, TNF-alpha, and MIP-1beta. Thus, the ability of rAd35 to naturally target important DC subsets, induce their maturation, and appropriately present Ag to T cells may herald greater in vivo immunogenicity than has been observed with rAd5.  相似文献   

6.
Adenoviruses (Ad) show promise as a vector system for gene delivery in vivo. However, a major challenge in the development of Ad vectors is the circumvention of the host immune responses to Ad infection, including both the host cytotoxic T-cell response and the humoral response resulting in neutralizing antibodies. One method to circumvent the effect of neutralizing antibodies against an Ad vector is to use different Ad serotypes to deliver the transgene of interest. This approach has been demonstrated with Ad genomes of highly related members of subgroup C. However, it is not known whether an Ad5-based vector DNA molecule can be packaged into capsids of evolutionarily more divergent adenoviruses. The aim of these studies was to determine if capsids containing hexon proteins from other Ad subgroups could package the Ad5 genome. A genetic approach utilizing an Ad5 temperature-sensitive (ts) mutant with a mutation in the hexon protein was used. When grown at the nonpermissive temperature, Ad5 ts147 replicates normally, providing a source of Ad5 DNA for virus assembly, but does not produce virus particles due to the hexon protein mutation. Coinfection of Ad5 ts147 with a wild-type virus of other Ad serotypes (Ad3, Ad4, or Ad9), which supply functional hexon proteins, resulted in the pseudopackaging of the Ad5 DNA genome. Furthermore, the pseudopackaged Ad5 DNA virions obtained in the coinfections were infectious. Therefore, switching hexons did not impair the infectivity or uncoating process of the pseudopackaged virion. Since hexon protein is a major antigenic determinant of the Ad capsid, this approach may prove useful to reduce the antigenicity of therapeutic Ad vectors and allow repeated vector administration.  相似文献   

7.
The deployment of adenovirus serotype 5 (Ad5)-based vectors is hampered by preexisting immunity. When such vectors are delivered intravenously, hepatocyte transduction is mediated by the hexon-coagulation factor X (FX) interaction. Here, we demonstrate that human sera efficiently block FX-mediated cellular binding and transduction of Ad5-based vectors in vitro. Neutralizing activity correlated well with the ability to inhibit Ad5-mediated liver transduction, suggesting that prescreening patient sera in this manner accurately predicts the efficacy of Ad5-based gene therapies. Neutralization in vitro can be partially bypassed by pseudotyping with Ad45 fiber protein, indicating that a proportion of neutralizing antibodies are directed against the Ad5 fiber.  相似文献   

8.
One of the objectives in adenovirus (Ad) vector development is to target gene delivery to specific cell types. Major attention has been given to modification of the Ad fiber knob, which is thought to determine virus tropism. However, among the human Ad serotypes with different tissue tropisms, not only the knob but also the length of the fiber shaft domain varies significantly. In this study we attempted to delineate the role of fiber length in coxsackievirus-adenovirus receptor (CAR)- and non-CAR-mediated infection. A series of Ad serotype 5 (Ad5) capsid-based vectors containing long or short fibers with knob domains derived from Ad5, Ad9, or Ad35 was constructed and tested in adsorption, internalization, and transduction studies. For Ad5 or Ad9 knob-possessing vectors, a long-shafted fiber was critical for efficient adsorption/internalization and transduction of CAR/alphav integrin-expressing cells. Ad5 capids containing short CAR-recognizing fibers were affected in cell adsorption and infection. In contrast, for the chimeric vectors possessing Ad35 knobs, which enter cells by a CAR/alphav integrin-independent pathway, fiber shaft length had no significant influence on binding or infectibility on tested cells. The weak attachment of short-shafted Ad5 or Ad9 knob-possessing vectors seems to be causally associated with a charge-dependent repulsion between Ad5 capsid and acidic cell surface proteins. The differences between short- and long-shafted vectors in attachment or infection were abrogated by preincubation of cells with polycations. This study demonstrates that the fiber-CAR interaction is not the sole determinant for tropism of Ad vectors containing chimeric fibers. CAR- and alphav integrin-mediated infections are influenced by other factors, including the length of the fiber shaft.  相似文献   

9.
We have previously shown that replication of foot-and-mouth disease virus (FMDV) is highly sensitive to alpha/beta interferon (IFN-alpha/beta). In the present study, we constructed recombinant, replication-defective human adenovirus type 5 vectors containing either porcine IFN-alpha or IFN-beta (Ad5-pIFNalpha or Ad5-pIFNbeta). We demonstrated that cells infected with these viruses express high levels of biologically active IFN. Swine inoculated with 10(9) PFU of a control Ad5 virus lacking the IFN gene and challenged 24 h later with FMDV developed typical signs of foot-and-mouth disease (FMD), including fever, vesicular lesions, and viremia. In contrast, swine inoculated with 10(9) PFU of Ad5-pIFNalpha were completely protected when challenged 24 h later with FMDV. These animals showed no clinical signs of FMD and no viremia and did not develop antibodies against viral nonstructural proteins, suggesting that complete protection from infection was achieved.  相似文献   

10.
Adenovirus serotype 5 (Ad5) has great potential for gene therapy applications. A major limitation, however, is the host immune response against Ad5 infection that often prevents the readministration of Ad5 vectors. In this regard, the most abundant capsid protein, hexon, has been implicated as the major target for neutralizing antibodies. In this study, we sought to escape the host neutralization response against Ad5 via hexon replacement. We constructed a chimeric adenovirus vector, Ad5/H3, by replacing the Ad5 hexon gene with the hexon gene of Ad3. The chimeric viruses were successfully rescued in 293 cells. Compared to that for the control Ad5/H5, the growth rate of Ad5/H3 was significantly slower and the final yield was about 1 log order less. These data indicate that the Ad3 hexon can encapsidate the Ad5 genome, but with less efficiency than the Ad5 hexon. The gene transfer efficacy of Ad5/H3 in HeLa cells was also lower than that of Ad5/H5. Furthermore, we tested the host neutralization responses against the two viruses by using C57BL/6 mice. The neutralizing antibodies against Ad5/H3 and Ad5/H5 generated by the immunized mice did not cross-neutralize each other in the context of in vitro infection of HeLa cells. Preimmunization of C57BL/6 mice with one of the two types of viruses also did not prevent subsequent infection of the other type. These data suggest that replacing the Ad5 hexon with the Ad3 hexon can circumvent the host neutralization response to Ad5. This strategy may therefore be used to achieve the repeated administration of Ad5 in gene therapy applications.  相似文献   

11.
The human embryonic kidney (HEK293) cell line, commonly used for recombinant adenovirus (Ad) propagation, does not express the Ad coreceptor alpha(v)beta3 or alpha(v)beta5 integrins, yet these cells are efficiently infected by Ad vectors. Here we demonstrate that Ad binds to HEK293 cells via the fiber receptor CAR and is subsequently internalized via interaction with integrin alpha(v)beta1. Function-blocking antibodies directed against alpha(v) or beta1, but not beta3, beta5, or alpha5, integrin subunits block Ad infection and viral endocytosis. Therefore, alpha(v)beta1 serves as a coreceptor for Ad infection, and the lack of beta3 and/or beta5 but the relatively high expression of alpha(v)beta1 integrins on certain tumor cell types may explain why these cells are readily transduced by Ad vectors.  相似文献   

12.
The fiber knob carries the type-specific gamma-antigen which can be demonstrated in hemagglutination inhibition tests. In order to characterize the gamma-determinant we selected subgenus DI adenovirus serotypes 9 and 19 (Ad9 and Ad19) which exhibited 29 amino acid exchanges in the knob domain. Like all subgenus DI adenoviruses they showed a complete hemagglutination pattern with rat and human erythrocytes. We constructed a total of 14 chimeric Ad9/Ad19 and Ad19/Ad9 fiber proteins, which possessed fiber knobs with progressively exchanged Ad9 and Ad19 amino acids. Furthermore, we created 39 fiber proteins with distinct amino acid exchanges in the knob regions by primer-directed mutagenesis. The proteins were expressed in Escherichia coli and tested in hemagglutination and hemagglutination inhibition tests. From our results we can conclude that the type-specific gamma-determinant is not restricted to a distinct region on the adenovirus fiber knob but is composed of at least 17 amino acids. Most of the amino acids contributing to the Ad9 and Ad19 gamma-determinants are located on the fiber knob loops.  相似文献   

13.
Adenovirus (Ad) vaccine vectors have proven highly immunogenic in multiple experimental models, but the innate immune responses induced by these vectors remain poorly characterized. Here we report innate cytokine responses to 5 different Ad vectors in 26 rhesus monkeys. Vaccination with adenovirus serotype 35 (Ad35), Ad26, and Ad48 induced substantially higher levels of antiviral (gamma interferon [IFN-γ], 10-kDa gamma interferon-induced protein [IP-10]) and proinflammatory (interleukin 1 receptor antagonist [IL-1RA], IL-6) cytokines than vaccination with Ad5 on day 1 following immunization. In vitro studies with capsid chimeric vectors and receptor-blocking monoclonal antibodies suggested that fiber-receptor interactions, as well as other capsid components, were critical for triggering these innate responses. Moreover, multiple cell populations, including dendritic cells, monocytes/macrophages, and T lymphocytes, contributed to these innate cytokine profiles. These data demonstrate that Ad35, Ad26, and Ad48, which utilize CD46 as their primary cellular receptor, induce significantly greater innate cytokine responses than Ad5, which uses the coxsackievirus and adenovirus receptor (CAR). These differences in innate triggering result in markedly different immunologic milieus for the subsequent generation of adaptive immune responses by these vaccine vectors.  相似文献   

14.
Adenovirus vectors based on human serotype 5 (Ad5) have successfully been used as gene transfer vectors in many gene therapy-based approaches to treat disease. Despite their widespread application, many potential therapeutic applications are limited by the widespread prevalence of vector-neutralizing antibodies within the human population and the inability of Ad5-based vectors to transduce important therapeutic target cell types. In an attempt to circumvent these problems, we have developed Ad vectors based on human Ad serotype 11 (Ad11), since the prevalence of neutralizing antibodies to Ad11 in humans is low. E1-deleted Ad11 vector genomes were generated by homologous recombination in 293 cells expressing the Ad11-E1B55K protein or by recombination in Escherichia coli. E1-deleted Ad11 genomes did not display transforming activity in rodent cells. Transduction of primary human CD34+ hematopoietic progenitor cells and immature dendritic cells was more efficient with Ad11 vectors than with Ad5 vectors. Thirty minutes after intravenous injection into mice that express one of the Ad11 receptors (CD46), we found, in a pattern and at a level comparable to what is found in humans, Ad11 vector genomes in all analyzed organs, with the highest amounts in liver, lung, kidney, and spleen. Neither Ad11 genomes nor Ad11 vector-mediated transgene expression were, however, detected at 72 h postinfusion. A large number of Ad11 particles were also found to be associated with circulating blood cells. We also discovered differences in in vitro transduction efficiencies and in vivo biodistributions between Ad11 vectors and chimeric Ad5 vectors possessing Ad11 fibers, indicating that Ad11 capsid proteins other than fibers influence viral infectivity and tropism. Overall, our study provides a basis for the application of Ad11 vectors for in vitro and in vivo gene transfer and for gaining an understanding of the factors that determine Ad tropism.  相似文献   

15.
Replication-deficient recombinant adenovirus (Ad) encoding human gp100 or MART-1 melanoma Ag was used to transduce human dendritic cells (DC) ex vivo as a model system for cancer vaccine therapy. A second generation E1/E4 region deleted Ad which harbors the CMV immediate-early promoter/enhancer and a unique E4-ORF6/pIX chimeric gene was employed as the backbone vector. We demonstrate that human monocyte-derived DC are permissive to Ad infection at multiplicity of infection between 100 and 500 and occurs independent of the coxsackie Ad receptor. Fluorescent-labeled Ad was used to assess the kinetics and distribution of viral vector within DC. Ad-transduced DC show peak transgene expression at 24-48 h and expression remains detectable for at least 7 days. DC transduced with replication-deficient Ad do not exhibit any unusual phenotypic characteristics or cytopathic effects. DC transduced with Ad2/gp100v2 can elicit tumor-specific CTL in vitro from patients bearing gp100+ metastatic melanoma. Using a panel of gp100-derived synthetic peptides, we show that Ad2/gp100v2-transduced DC elicit Ag-specific CTL that recognize only the G209 and G280 epitopes, both of which display relatively short half-lives ( approximately 7-8 h) on the surface of HLA-A*0201+ cells. Thus, patients with metastatic melanoma are not tolerant to gp100 Ag based on the detection of CD8+ T cells specific for multiple HLA-A*0201-restricted, gp100-derived epitopes.  相似文献   

16.
Recent studies have demonstrated the usefulness of dendritic cells (DCs) genetically modified by adenovirus vectors (Ad) to immunotherapy, while sufficient gene transduction into DCs is required for high doses of Ad. The RT-PCR analysis revealed that the relative resistance of DCs to Ad-mediated gene transfer is due to the absence of Coxsackie-adenovirus receptor expression, and that DCs expressed adequate alpha(v)-integrins. Therefore, we investigated whether fiber-mutant Ad containing the Arg-Gly-Asp (RGD) sequence in the fiber knob can efficiently transduce and express high levels of the LacZ gene into DCs. The gene delivery by fiber-mutant Ad was more efficient than that by conventional Ad in both murine DC lines and normal human DCs (NHDC). Furthermore, NHDC transduced with fiber-mutant Ad and conventional Ad at 8000-vector particles/cell resulted in a 70-fold difference in beta-galactosidase activity. We propose that alpha(v)-integrin-targeted Ad is a very powerful tool with which to implement DC-based vaccination strategies.  相似文献   

17.
Bone marrow-derived dendritic cells (DCs) can be genetically engineered using adenoviral (Ad) vectors to express immunosuppressive molecules that promote T cell unresponsiveness. The success of these DCs for therapy of allograft rejection has been limited in part by the potential of the adenovirus to promote DC maturation and the inherent ability of the DC to undergo maturation following in vivo administration. DC maturation occurs via NF-kappaB-dependent mechanisms, which can be blocked by double-stranded "decoy" oligodeoxyribonucleotides (ODNs) containing binding sites for NF-kappaB. Herein, we describe the combined use of NF-kappaB ODNs and rAd vectors encoding CTLA4-Ig (Ad CTLA4-Ig) to generate stably immature murine myeloid DCs that secrete the potent costimulation blocking agent. These Ad CTLA4-Ig-transduced ODN DCs exhibit markedly impaired allostimulatory ability and promote apoptosis of activated T cells. Furthermore, administration of Ad CTLA4-Ig ODN-treated donor DCs (C57BL10; B10(H-2b)) before transplant significantly prolongs MHC-mismatched (C3HHeJ; C3H(H-2k)) vascularized heart allograft survival, with long-term (>100 days) donor-specific graft survival in 40% of recipients. The mechanism(s) responsible for DC tolerogenicity, which may involve activation-induced apoptosis of alloreactive T cells, do not lead to skewing of intragraft Th cytokine responses. Use of NF-kappaB antisense decoys in conjunction with rAd encoding a potent costimulation blocking agent offers promise for therapy of allograft rejection or autoimmune disease with minimization of systemic immunosuppression.  相似文献   

18.
We have analyzed the binding of adenovirus (Ad) serotypes from subgroups B, C, and D through fiber-virus and fiber-fiber cross-competition experiments. Since viruses in these distinct subgroups display markedly different tropisms, it was unexpected that the subgroup C viruses Ad2 and 5 and the subgroup D virus Ad9 cross-competed for the same cellular fiber receptor. The subgroup B serotype Ad3 recognized a receptor distinct from the Ad2, 5, and 9 fiber receptor. However, despite sharing the same fiber receptor, Ad2 and Ad9 displayed markedly different binding characteristics that appeared to result from direct Ad9 binding to cells via alpha(v)-integrins. Unlike Ad2, Ad9 binding to many cell lines was not abrogated by competition with the fiber 9 knob (F9K). Ad9 binding to fiber receptor-deficient cells was blocked by a monoclonal antibody to alpha(v)-integrins. In contrast, Ad9 binding to alpha(v)-deficient cells that express fiber receptor was blocked by F9K. Transfection of an alpha(v)-integrin-deficient cell line with a plasmid that expresses alpha(v)beta5 resulted in Ad9 binding that was not significantly blocked by F9K but was blocked with a combination of F9K and penton base. These results imply that the shorter length of fiber 9 (11 nm) relative to fiber 2 (37 nm) permits fiber-independent binding of Ad9 penton base to alpha(v)-integrins. The difference in fiber length may explain the different binding characteristics and tissue tropisms of each virus despite both utilizing the same fiber and penton base receptors.  相似文献   

19.
Adenovirus type 5 (Ad5) inactivates the host cell DNA damage response by facilitating the degradation of Mre11, DNA ligase IV, and p53. In the case of p53, this is achieved through polyubiquitylation by Ad5E1B55K and Ad5E4orf6, which recruit a Cul5-based E3 ubiquitin ligase. Recent evidence indicates that this paradigm does not apply to other adenovirus serotypes, since Ad12, but not Ad5, causes the degradation of TOPBP1 through the action of E4orf6 alone and a Cul2-based E3 ubiquitin ligase. We now have extended these studies to adenovirus groups A to E. While infection by Ad4, Ad5, and Ad12 (groups E, C, and A, respectively) cause the degradation of Mre11, DNA ligase IV, and p53, infection with Ad3, Ad7, Ad9, and Ad11 (groups B1, B1, D, and B2, respectively) only affects DNA ligase IV levels. Indeed, Ad3, Ad7, and Ad11 cause the marked accumulation of p53. Despite this, MDM2 levels were very low following infection with all of the viruses examined here, regardless of whether they increase p53 expression. In addition, we found that only Ad12 causes the degradation of TOPBP1, and, like Ad5, Ad4 recruits a Cul5-based E3 ubiquitin ligase to degrade p53. Surprisingly, Mre11 and DNA ligase IV degradation do not appear to be significantly affected in Ad4-, Ad5-, or Ad12-infected cells depleted of Cul2 or Cul5, indicating that E1B55K and E4orf6 recruit multiple ubiquitin ligases to target cellular proteins. Finally, although Mre11 is not degraded by Ad3, Ad7, Ad9, and Ad11, no viral DNA concatemers could be detected. We suggest that group B and D adenoviruses have evolved mechanisms based on the loss of DNA ligase IV and perhaps other unknown molecules to disable the host cell DNA damage response to promote viral replication.  相似文献   

20.
BACKGROUND: The high affinity Fcgamma receptor I (FcgammaRI; aka CD64) is expressed by dendritic cells (DC) and antigens targeted to this receptor elicit enhanced immune responses. This study was designed to test the hypothesis that targeting an adenoviral (Ad) vector to FcgammaRI would lead to enhanced transduction of DC and an improved immune response to vector-encoded antigens. METHODS: A bispecific adaptor molecule consisting of a trimeric adenovirus fiber-binding moiety fused to a single-chain antibody specific for human FcgammaRI was generated. Transduction of cultured cells, including human DC, by the FcgammaRI-targeted Ad was then evaluated using reporter genes (GFP, luciferase). Immunophenotypic and functional characteristics of vector-transduced DC were also measured by flow cytometry, cytokine ELISA and mixed lymphocyte reaction (MLR); antigen-specific stimulation of autologous CD8(+) T cells was evaluated using vectors encoding cytomegalovirus (CMV) pp65. RESULTS: FcgammaRI-targeted Ad transduced primary DC with 10-15-fold greater efficiency than unmodified Ad or Ad vectors complexed to an adaptor protein that targeted an irrelevant receptor. However, FcgammaRI-targeting had no effect of Ad-induced activation of DC, as measured by cytokine release or expression of cell surface activation markers. Finally, FcgammaRI-targeting of vectors encoding CMV pp65 resulted in an increase in the activation of antigen-specific autologous human CD8(+) T cells. CONCLUSIONS: FcgammaRI-targeting significantly enhances the efficiency of Ad vector-mediated gene transfer in primary human DC, and results in an improved immune response to a vector-encoded antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号