首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
Glioblastoma (GBM) is the most aggressive of primary brain tumors. Despite the progress in understanding the biology of the pathogenesis of glioma made during the past decade, the clinical outcome of patients with GBM remains still poor. Deregulation of many signaling pathways involved in growth, survival, migration and resistance to treatment has been implicated in pathogenesis of GBM. One of these pathways is phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT)/rapamycin-sensitive mTOR-complex (mTOR) pathway, intensively studied and widely described so far. Much less attention has been paid to the role of glycogen synthase kinase 3 β (GSK3β), a target of AKT. In this review we focus on the function of AKT/GSK3β signaling in GBM.  相似文献   

2.
Increased circulating oxidized LDL (oxLDL) have been found in obese subjects. Obesity is characterized by an excess of fat mass resulting from an increase in adipocyte number and size. The generation of new adipocytes is a tightly controlled process where multiple factors acting in a signaling cascade follow a precise temporal expression pattern; oxLDL appear to have a role in the impairment of this process. The purpose of this study was to examine the effects of oxLDL on the mechanisms involved in the proliferative stage of the differentiation process in 3T3-L1 cells. After hormonal induction, 3T3-L1 cells undergo approximately two rounds of mitotic clonal expansion (MCE), a process required for adipogenesis. CCAAT/enhancer-binding protein β (C/EBPβ) is immediately expressed after induction, and plays a crucial role in MCE, but its expression must decrease to allow preadipocytes to mature into adipocytes. We found that, in the presence of stimuli to differentiate, oxLDL induced a higher proliferation rate in this cell line, associated with a sustained up-regulation of C/EBPβ, which remained activated inside the nucleus for several days. RNAi-mediated knockdown of C/EBPβ 24 h after oxLDL treatment counteracted the increase in proliferation rate. Both C/EBPβ expression and proliferation processes appear to be influenced by cAMP/protein kinase A (PKA) and extracellular signal-regulated kinases1/2 (ERK1/2) pathways. OxLDL treatment led to increased levels of cAMP, and to a strong, prolonged phosphorylation of ERK1/2 and C/EBPβ. The addition of cAMP and PKA inhibitors, SQ22536 and H-89, respectively, reduced proliferation only in oxLDL-treated cells, whereas the addition of ERK1/2 inhibitor U0126 blocked proliferation in both control and oxLDL-treated cells. C/EBPβ nuclear expression and DNA-binding activity were reduced by U0126, under all tested conditions. These findings show that the altered expression pattern of C/EBPβ is involved in the increase in the number of proliferating cells induced by oxLDL, in hormone-stimulated 3T3-L1 cells.  相似文献   

3.
Spinocerebellar ataxia type 3 (SCA3), or Machado—Joseph disease (MJD), is an autosomal dominantly-inherited disease that produces progressive problems with movement. It is caused by the expansion of an area of CAG repeats in a coding region of ATXN3. The number of repeats is inversely associated with age at disease onset (AO) and is significantly associated with disease severity; however, the degree of CAG expansion only explains 50 to 70% of variance in AO. We tested two SNPs, rs709930 and rs910369, in the 3’ UTR of ATXN3 gene for association with SCA3/MJD risk and with SCA3/MJD AO in an independent cohort of 170 patients with SCA3/MJD and 200 healthy controls from mainland China. rs709930 genotype frequencies were statistically significantly different between patients and controls (p = 0.001, α = 0.05). SCA3/MJD patients carrying the rs709930 A allele and rs910369 T allele experienced an earlier onset, with a decrease in AO of approximately 2 to 4 years. The two novel SNPs found in this study might be genetic modifiers for AO in SCA3/MJD.  相似文献   

4.
Defining the pathways required for keratinocyte cell migration is important for understanding mechanisms of wound healing and tumor cell metastasis. We have recently identified an α6β4 integrin-Rac1 signaling pathway via which the phosphatase Slingshot (SSH) activates/dephosphorylates cofilin, thereby determining keratinocyte migration behavior. Here, we assayed the role of 14-3-3 isoforms in regulating the activity of SSH1. Using amino or carboxy terminal domains of 14-3-3ζ, we demonstrate that in keratinocytes 14-3-3ζ/τ heterodimers bind SSH1, in the absence of Rac1 signaling. This interaction leads to an inhibition of SSH1 activity, as measured by an increase in phosphorylated cofilin levels. Overexpression of the carboxy terminal domain of 14-3-3ζ acts as a dominant negative and inhibits the interaction between 14-3-3τ and SSH1. These results implicate 14-3-3ζ/τ heterodimers as key regulators of SSH1 activity in keratinocytes and suggest they play a role in cytoskeleton remodeling during cell migration.  相似文献   

5.
Few studies have explored the effect of hydrogen on neuronal apoptosis or impaired nerve regeneration after traumatic brain injury, and the mechanisms involved in these processes are unclear. In this study, we explored neuroprotection of hydrogen-rich medium through activation of the miR-21/PI3K/AKT/GSK-3β pathway in an in vitro model of traumatic brain injury. Such model adopted PC12 cells with manual scratching. Then, injured cells were cultured in hydrogen-rich medium for 48 hours. Expression of miR-21, p-PI3K, p-Akt, p-GSK-3β, Bax and Bcl-2 was measured using RT-qPCR, Western blot analysis and immunofluorescence staining. Rate of apoptosis was determined using TUNEL staining. Neuronal regeneration was assessed using immunofluorescence staining. The results showed that hydrogen-rich medium improved neurite regeneration and inhibited apoptosis in the injured cells. Scratch injury was accompanied by up-regulation of miR-21, p-PI3K, p-Akt and p-GSK-3β. A miR-21 antagomir inhibited the expression of these four molecules, while a PI3K blocker only affected the three proteins and not miR-21. Both the miR-21 antagomir and PI3K blocker reversed the protective effect of hydrogen. In conclusion, hydrogen exerted a neuroprotective effect against neuronal apoptosis and impaired nerve regeneration through activation of miR-21/PI3K/AKT/GSK-3β signalling in this in vitro model of traumatic brain injury.  相似文献   

6.
7.

Background

Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR), an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA)-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs) and mouse lung fibroblasts (mLFs).

Methods

Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR) in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT) in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s) of airway remodeling.

Results

In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.

Conclusion

Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.  相似文献   

8.
Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells.  相似文献   

9.
10.
The administration of 3α-tigloyl-[1-14C]-oxytropane-[3β-3H] (3H/14C = 11·0 to Datura innoxia plants for 7 days led to the formation of radioactive meteloidine (3H/14C = 11·6). Degradation of the meteloidine indicated that the alkaloid was labeled specifically with 3H at C-3 of its teloidine moiety, and on the carbonyl group of its tigloyl residue with 14C. These results strongly favor the hypothesis that hydroxylation of tropine occurs after formation of its tigloyl ester.  相似文献   

11.
Many variants of the DR3/LARD death receptor mRNA are derived during alternative splicing. Different DR3/LARD mRNAs encode the membrane and soluble forms of the receptor, which perform different functions. The frequency of the spliced mRNA variants of DR3/LARD was assessed by RT-PCR in patients with colorectal cancer and in cancer cell lines. Four forms of the DR3/LARD death receptor mRNA were detected with different frequencies in the studied samples. Two of them encoded the membrane molecules (LARD 1a mRNA and DR3β mRNA) and two other forms expressed the soluble forms of the receptor (LARD 3 mRNA and soluble DR3β mRNA). In the blood of healthy volunteers, 11 variants (spectra) of DR3/LARD mRNA forms were identified, and the full spectrum that included all four variants of DR3/LARD mRNA dominated. In blood and tumor center samples from patients with colon cancer, six spectra of DR3/LARD mRNA were found. The diversity of the DR3/LARD mRNA spectra was decreased in colon cancer patients due to the reduced frequency of soluble DR3β mRNA. In samples of tumor centers, the spectrum with the absence of only mRNA of the soluble DR3β form dominated. In the blood of patients, two spectra prevailed, i.e., the full spectrum and LARD 1a mRNA and LARD 3 mRNA. Only these two spectra of DR3/LARD mRNA were also found in cancer cell lines. Distinctions in the frequency of DR3/LARD mRNA spectra in healthy volunteers and patients with colorectal cancer can define the different susceptibility of immunocompetent and tumor cells to apoptosis signals.  相似文献   

12.
Endometriosis is an inflammation-dependent disease that shares similarities with malignant tumors including attachment and infiltration. Tripartite motif-containing 24 (TRIM24) has been illustrated in inflammatory responses and gynecological tumors, and Nod-like receptor protein 3 (NLRP3) inflammasome has been implicated in endometriosis. However, the involvement of TRIM24 and the role of NLRP3/caspase-1/interleukin-1β (IL-1β)-mediated pyroptosis in endometriosis remain obscure. In this study, we originally detected the decreased expression of TRIM24 in the ectopic endometrium of endometriosis compared with the normal endometrium. Then we measured the promoted protein expression of pyroptotic biomarkers (NLRP3, procaspase-1, caspase-1, pro-IL-1β, and IL-1β) using Western blot analysis and the stimulated secretion of IL-1β and IL-18 by enzyme-linked immunosorbent assay in ectopic human endometrial stromal cells (hESC) compared with normal hESC. TRIM24-small-interfering RNA (siTRIM24) was used to silence TRIM24, whereas TRIM24-pcDNA3.1 was used for overexpressing TRIM24. The migration of hESC was determined by a Transwell migration assay. Coimmunoprecipitation and ubiquitination analyses were conducted to explore the interaction between TRIM24 and NLRP3. Subsequently, we found that TRIM24 negatively regulated NLRP3/caspase-1/IL-1β-mediated pyroptosis and cell migration of hESC, and CY-09, the specific inhibitor of NLRP3, could reverse the promoted pyroptosis and cell migration induced by siTRIM24. Furthermore, TRIM24 interacted with NLRP3 and the upregulation of TRIM24 facilitated the ubiquitination of NLRP3 in ectopic hESC. Our findings suggest that TRIM24 may participate in the progression of endometriosis through the NLRP3/caspase-1/IL-1β-mediated pyroptotic pathway via ubiquitination of NLRP3, which reveals the significant molecular mechanism underlying endometriosis.  相似文献   

13.
14.
PICK1 is a modular scaffold implicated in synaptic receptor trafficking. It features a PDZ domain, a BAR domain, and an acidic C-terminal tail (ACT). Analysis by small- angle x-ray scattering suggests a structural model that places the receptor-binding site of the PDZ domain and membrane-binding surfaces of the BAR and PDZ domains adjacent to each other on the concave side of the banana-shaped PICK1 dimer. In the model, the ACT of one subunit of the dimer interacts with the PDZ and BAR domains of the other subunit, possibly accounting for autoinhibition. Consistently, full-length PICK1 shows diffuse cytoplasmic localization, but it clusters on vesicle-like structures that colocalize with the trans-Golgi network marker TGN38 upon deletion of either the ACT or PDZ domain. This localization is driven by the BAR domain. Live-cell imaging further reveals that PICK1-associated vesicles undergo fast, nondirectional motility in an F-actin–dependent manner, but deleting the ACT dramatically reduces vesicle speed. Thus the ACT links PICK1-associated vesicles to a motility factor, likely myosin, but, contrary to previous reports, PICK1 neither binds nor inhibits Arp2/3 complex.  相似文献   

15.
16.
17.
Occupational exposure to beryllium (Be) and Be compounds occurs in a wide range of industrial processes. A large number of workers are potentially exposed to this metal during manufacturing and processing, so there is a concern regarding the potential carcinogenic hazard of Be. Studies were performed to determine the carcinogenic potential of beryllium sulfate (BeSO4) in cultured mammalian cells. BALB/c3T3 cells were treated with varying concentrations of BeSO4 for 72 h and the transformation frequency was determined after 4 weeks of culturing. Concentrations from 50–200 g BeSO4/ml, caused a concentrationdependent increase (9–41 fold) in transformation frequency. Nontransformed BALB/c3T3 cells and cells from transformed foci induced by BeSO4 were injected into both axillary regions of nude mice. All ten Beinduced transformed cell lines injected into nude mice produced fibrosarcomas within 50 days after cell injection. No tumors were found in nude mice receiving nontransformed BALB/c3T3 cells 90 days postinjection. Gene amplification was investigated in Kras, cmyc, cfos, cjun, csis, erbB2 and p53 using differential PCR while random amplified polymorphic DNA fingerprinting was employed to detect genomic instability. Gene amplification was found in Kras and cjun, however no change in gene expression or protein level was observed in any of the genes by Western blotting. Five of the 10 transformed cell lines showed genetic instability using different random primers. In conclusion, these results indicate that BeSO4 is capable of inducing morphological cell transformation in mammalian cells and that transformed cells induced by BeSO4 are potentially tumorigenic. Also, cell transformation induced by BeSO4 may be attributed, in part, to the gene amplification of Kras and cjun and some BeSO4induced transformed cells possess neoplastic potential resulting from genomic instability.  相似文献   

18.
《Cellular signalling》2014,26(3):580-593
Although PLCε has been verified to enhance bladder cancer cell invasion, the signaling pathways responsible for this remain elusive. Protein kinase C (PKCα/β), which is involved in cancer development and progression, has been demonstrated to be activated by PLCε. However, the roles of PKCα/β in PLCε-mediated bladder carcinoma cell invasion and migration have not been clearly identified. In this study, to determine what role PKCα/β plays in PLCε-mediated bladder cancer cell invasion and migration, we silenced PLCε gene by adenovirus-shPLCε in T24 and BIU-87 cells and then revealed that it significantly inhibited cell migration and invasion. Further research indicated that cell bio-function of PLCε-regulated was related with PKCα/β activity. These in vitro findings were supported by data from bladder carcinoma patient samples. In 35 case bladder cancer tumor samples, PLCε-overexpressing tumors showed significantly higher positive rates of PKCα/β membrane immunohistochemistry staining than PLCε-low-expressing tumors. Mechanistically, study further showed that PLCε knockdown gene induced E-cadherin expression and decreased TBX3 expression, both of which were dependent on PKCα/β activity. In addition, we demonstrated that treatment cells with TBX3-specific shorting hairpin RNA (shRNA) up-regulated E-cadherin expression and inhibited cell invasion/migration. Moreover, in in vivo experiment, immunohistochemistry analysis of Ad-shPLCε-infected tumor tissue showed low expression levels of phospho-PKCα/β and TBX3 and high expression levels of E-cadherin compared with those of the control group. In summary, our findings uncover that PKCα/β is critical for PLCε-mediated cancer cell invasion and migration and provide valuable insights for current and future Ad-shPLCε and PKCα/β clinical trials.  相似文献   

19.
The critical Cd exposure level to induce tubular dysfunctions is a focus of public concern among general populations in Japan. To answer this question, one group each (about 1000 adult women/area) in nonpolluted areas with high (Area H) and low Cd exposure (Area L) was obtained, and 742 strictly age-matched pairs of never-smoking adult women were selected for comparison. Cd, α1-MG (microglobulin) and β2-MG in urine were taken as markers of exposure and tubular dysfunction, respectively. Geometric mean Cd levels as corrected for creatinine (Cdcr) was greater than three times higher in Area H (2.8 μg/g cr) than in Area L (0.8 μg/g cr). Nevertheless, β2-MGcr did not differ between the two areas (125 μg/g cr for Area H vs 118 μg/g cr for Area L). α1-MGcr was only marginally higher in Area H (2.8 mg/g cr) than in Area L (2.1 mg/g cr), with no biomedical significance. Results were essentially the same when analyses were conducted with noncorrected observed values or values corrected for a specific gravity. Thus, the effects of Cd exposure in Area H on renal tubular function should be essentially nil.  相似文献   

20.
Angiogenesis, a hallmark of tumor growth, is regulated by various angiogenic factors. Recent studies have shown that osteopontin (OPN) is a secreted, integrin-binding protein that contributes to glioma progression. However, its effect on the angiogenesis of gliomas is not fully understood. To elucidate the role of OPN in the process of glioma angiogenesis, endothelial progenitor cells (EPCs) were treated with conditioned media of human glioma SHG44 cells overexpressing OPN. Here, we identified that OPN secreted by glioma cells accelerated EPCs angiogenesis in vitro, including proliferation, migration, and tube formation. OPN also induced the activation of AKT and endothelial nitric oxide synthase (eNOS) and increased NO production without affecting the expression of VEGF, VEGFR-1, or VEGFR-2. Moreover, the avβ3 antibody, the PI3-K inhibitor LY294002 and the eNOS inhibitor NMA suppressed the OPN-mediated increase in NO production and angiogenesis in EPCs. Taken together, these results demonstrate that OPN directly stimulates angiogenesis via the avβ3/PI3-K/AKT/eNOS/NO signaling pathway and may play an important role in tumorigenesis by enhancing angiogenesis in gliomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号