首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The yeast TTAGGG binding factor 1 (Tbf1) was identified and cloned through its ability to interact with vertebrate telomeric repeats in vitro. We show here that a sequence of 60 amino acids located in its C-terminus is critical for DNA binding. This sequence exhibits homologies with Myb repeats and is conserved among five proteins from plants, two of which are known to bind telomeric-related sequences, and two proteins from human, including the telomeric repeat binding factor (TRF) and the predicted C-terminal polypeptide, called orf2, from a yet unknown protein. We demonstrate that the 111 C-terminal residues of TRF and the 64 orf2 residues are able to bind the human telomeric repeats specifically. We propose to call the particular Myb-related motif found in these proteins the 'telobox'. Antibodies directed against the Tbf1 telobox detect two proteins in nuclear and mitotic chromosome extracts from human cell lines. Moreover, both proteins bind specifically to telomeric repeats in vitro. TRF is likely to correspond to one of them. Based on their high affinity for the telomeric repeat, we predict that TRF and orf2 play an important role at human telomeres.  相似文献   

2.
In association with a phylogenetic tree of Asparagales, our previous results showed that a distinct clade included plant species where the ancestral, Arabidopsis-type of telomeric repeats (TTTAGGG)n had been partially, or fully, replaced by the human-type telomeric sequence (TTAGGG)n. Telomerases of these species synthesize human repeats with a high error rate in vitro. Here we further characterize the structure of telomeres in these plants by analyzing the overall arrangement of major and minor variants of telomeric repeats using fluorescence in situ hybridization on extended DNA strand(s). Whilst the telomeric array is predominantly composed of the human variant of the repeat, the ancestral, Arabidopsis-type of telomeric repeats was ubiquitously observed at one of the ends and/or at intercalary positions of extended telomeric DNAs. Another variant of the repeat typical of Tetrahymena was observed interspersed in about 20% of telomerics. Micrococcal nuclease digestions indicated that Asparagales plants with a human-type of telomere have telomeric DNA organised into nucleosomes. However, unexpectedly, the periodicity of the nucleosomes is not significantly shorter than bulk chromatin as is typical of telomeric chromatin. Using electrophoretic mobility shift assays we detected in Asparagales plants with a human type of telomere a 40-kDa protein that forms complexes with both Arabidopsis- and human-type G-rich telomeric strands. However, the protein shows a higher affinity to the ancestral Arabidopsis-type sequence. Two further proteins were found, a 25-kDa protein that binds specifically to the ancestral sequence and a 15-kDa protein that binds to the human-type telomeric repeat. We discuss how the organisation of the telomere repeats in Asparagales may have arisen and stabilised the new telomere at the point of mutation.  相似文献   

3.
In Saccharomyces cerevisiae, telomeric DNA is protected by a nonnucleosomal protein complex, tethered by the protein Rap1. Rif and Sir proteins, which interact with Rap1p, are thought to have further interactions with conventional nucleosomic chromatin to create a repressive structure that protects the chromosome end. We showed by microarray analysis that Rif1p association with the chromosome ends extends to subtelomeric regions many kilobases internal to the terminal telomeric repeats and correlates strongly with the previously determined genomic footprints of Rap1p and the Sir2-4 proteins in these regions. Although the end-protection function of telomeres is essential for genomic stability, telomeric DNA must also be copied by the conventional DNA replication machinery and replenished by telomerase, suggesting that transient remodeling of the telomeric chromatin might result in distinct protein complexes at different stages of the cell cycle. Using chromatin immunoprecipitation, we monitored the association of Rap1p, Rif1p, Rif2p, and the protein component of telomerase, Est2p, with telomeric DNA through the cell cycle. We provide evidence for dynamic remodeling of these components at telomeres.  相似文献   

4.
Bacteriophage lambda clones containing Theileria parva genomic DNA derived from two different telomeres were isolated and the nucleotide sequences of the telomeric repeats and adjacent telomere-associated (TAS) DNA were determined. The T.parva telomeric repeat sequences, a tandem array of TTTTAGGG or TTTAGGG interspersed with a few variant copies, showed a high degree of sequence identity to those of the photosynthetic algae Chlamydomonas reinhardtii (97% identity) and Chlorella vulgaris (87.7% identity) and the angiosperm Arabidopsis thaliana (84.4% identity). Unlike most organisms which have been studied, no significant repetitive sequences were found in the nucleotide sequences of TAS DNA located centromere-proximal to the telomeric repeats. Restriction mapping and hybridisation analysis of lambda EMBL3 clones containing 16 kilobases of TAS DNA derived from one telomere suggested that they did not contain long regions of repetitive DNA. The cloned TAS DNAs were mapped to T.parva Muguga genomic SfiI fragments 8 and 20, which are located at opposite ends of the largest T.parva chromosome. A 126 bp sequence located directly centromere-proximal to the telomeric repeats was 94% identical between the two cloned telomeres. The conserved 126 bp sequence was present on all T.parva Muguga telomeric SfiI fragments.  相似文献   

5.
In the telomeres of the silkworm Bombyx mori, telomeric repeat-specific non-long terminal repeat (LTR) retrotransposon SARTBm1 is accumulated in the TTAGG telomeric repeats. Here, we identify novel telomeric repeat-specific non-LTR retrotransposons, SARTTc family, from the red flour beetle Tribolium castaneum in the unconventional TCAGG telomeric repeats. To compare the sequence specificity of SARTBm1 and SARTTc1, we developed a comparable ex vivo retrotransposition assay. Both SARTBm1 and SARTTc1 preferred the telomeric sequence of their hosts, suggesting that the target specificity of these retrotransposons coevolved with their host's telomeric repeats. Swapping experiment indicated that the endonuclease domain is involved in recognizing the target sequence. Moreover, SARTBm1 proteins could retrotranspose 3'untranslated region (UTR) sequence of SARTTc1 as well as their own 3'UTR, whereas SARTTc1 proteins could only retrotranspose their own 3'UTRs. These results provide insights to the mechanism and divergence of sequence specificity and 3'UTR recognition in non-LTR retrotransposons.  相似文献   

6.
The Ku70-Ku80 heterodimer is a conserved protein complex essential for the non-homologous end-joining pathway. Ku proteins are also involved in telomere maintenance, although their precise roles remain to be elucidated. In fission yeast, pku70(+), the gene encoding the Ku70 homologue, has been reported. Here we report the identification and characterization of pku80(+), the gene encoding Ku80. Both pku70(+) and pku80(+) are essential for efficient non-homologous end-joining. We also found that the pku70 and pku80 mutants are sensitive to methyl methanesulfonate and hydroxyurea, suggesting their roles in the S phase. The pku80 mutant shows telomere shortening and tandem amplification of a subtelomeric sequence but no defects in the telomere position effect, as was previously reported for the pku70 mutant. By using the chromatin immunoprecipitation assay, we demonstrated that Pku70 and Pku80 physically interact with telomeric repeats and subtelomeric sequences. Interestingly, this telomere association of Pku proteins is independent of Taz1, a telomeric DNA-binding protein. We also showed that the Pku proteins do not associate with ectopically integrated telomeric repeats in the internal region of circular chromosomes. These results indicate that the physical end of DNA is necessary for the localization of Pku80 at telomeres.  相似文献   

7.
F Müller  C Wicky  A Spicher  H Tobler 《Cell》1991,67(4):815-822
During the process of chromatin diminution, which takes place in all presomatic cells of the early Ascaris embryo, the heterochromatic termini of the chromosomes are lost. Here we show that the newly formed ends of the reduced somatic chromosomes carry tandem repeats of the telomeric sequence TTAGGC. Comparison of a cloned somatic telomere with the corresponding germline chromosomal region revealed that these telomeric repeats are not present at or near the chromosomal breakage site. They are most likely added by a telomerase-mediated event. Chromosomal breakage, which precedes the telomere addition process, takes place within a short, specific chromosomal region (CBR); however, it does not occur at a single locus, but rather at many different sites. Altogether, our data show that chromatin diminution in Ascaris is a complex molecular process that includes site-specific chromosomal breakage, new telomere formation, and DNA degradation.  相似文献   

8.
Noncoding repetitive sequences make up a large portion of eukaryotic genomes, but their function is not well understood. Large blocks of repetitive DNA-forming heterochromatin around the centromeres are required for this region to function properly, but are difficult to analyze. The smaller regions of heterochromatin at the telomeres provide an opportunity to study their DNA and protein composition. Drosophila telomere length is maintained through the targeted transposition of specific non-long terminal repeat retrotransposons to chromosome ends, where they form long tandem arrays. A subterminal telomere-associated sequence (TAS) lies immediately proximal to the terminal-retrotransposon array. Here, we review the experimental support for the heterochromatic features of Drosophila telomeres, and provide evidence that telomeric regions contain 2 distinct chromatin subdomains: TAS, which exhibits features that resemble beta heterochromatin; and the terminal array of retrotransposons, which appears euchromatic. This organization is significantly different from the telomeric organization of other eukaryotes, where the terminal telomerase-generated repeats are often folded in a t-loop structure and become part of the heterochromatin protein complex.  相似文献   

9.
Heterochromatin, or silent chromatin, preferentially resides at the nuclear envelope. Telomeres and rDNA repeats are the two major perinuclear silent chromatin domains of Saccharomyces cerevisiae. The Cohibin protein complex maintains rDNA repeat stability in part through silent chromatin assembly and perinuclear rDNA anchoring. We report here a role for Cohibin at telomeres and show that functions of the complex at chromosome ends and rDNA maintain replicative life span. Cohibin binds LEM/SUN domain-containing nuclear envelope proteins and telomere-associated factors. Disruption of Cohibin or the envelope proteins abrogates telomere localization and silent chromatin assembly within subtelomeres. Loss of Cohibin limits Sir2 histone deacetylase localization to chromosome ends, disrupts subtelomeric DNA stability, and shortens life span even when rDNA repeats are stabilized. Restoring telomeric Sir2 concentration abolishes chromatin and life span defects linked to the loss of telomeric Cohibin. Our work uncovers roles for Cohibin complexes and reveals relationships between nuclear compartmentalization, chromosome stability, and aging.  相似文献   

10.
Chromosome ends are protected from degradation by the presence of the highly repetitive hexanucleotide sequence of TTAGGG and associated proteins. These so-called telomeric complexes are suggested to play an important role in establishing a functional nuclear chromatin organization. Using peptide nucleic acid (PNA) probes, we studied the dynamic behavior of telomeric DNA repeats in living human osteosarcoma U2OS cells. A fluorescent cy3-labeled PNA probe was introduced in living cells by glass bead loading and was shown to specifically associate with telomeric DNA shortly afterwards. Telomere dynamics were imaged for several hours using digital fluorescence microscopy. While the majority of telomeres revealed constrained diffusive movement, individual telomeres in a human cell nucleus showed significant directional movements. Also, a subfraction of telomeres were shown to associate and dissociate, suggesting that in vivo telomere clusters are not stable but dynamic structures. Furthermore, telomeres were shown to associate with promyelocytic leukemia (PML) bodies in a dynamic manner.  相似文献   

11.
Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres.By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping.Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization.  相似文献   

12.
13.
hnRNP A1 associates with telomere ends and stimulates telomerase activity   总被引:6,自引:1,他引:5  
Telomerase is a ribonucleoprotein enzyme complex that reverse-transcribes an integral RNA template to add short DNA repeats to the 3'-ends of telomeres. G-quadruplex structure in a DNA substrate can block its extension by telomerase. We have found that hnRNP A1--which was previously implicated in telomere length regulation--binds to both single-stranded and structured human telomeric repeats, and in the latter case, it disrupts their higher-order structure. Using an in vitro telomerase assay, we observed that depletion of hnRNP A/B proteins from 293 human embryonic kidney cell extracts dramatically reduced telomerase activity, which was fully recovered upon addition of purified recombinant hnRNP A1. This finding suggests that hnRNP A1 functions as an auxiliary, if not essential, factor of telomerase holoenzyme. We further show, using chromatin immunoprecipitation, that hnRNP A1 associates with human telomeres in vivo. We propose that hnRNP A1 stimulates telomere elongation through unwinding of a G-quadruplex or G-G hairpin structure formed at each translocation step.  相似文献   

14.
E J Richards  S Chao  A Vongs    J Yang 《Nucleic acids research》1992,20(15):4039-4046
In an effort to learn more about the genomic organization of chromosomal termini in plants we employed a functional complementation strategy to isolate Arabidopsis thaliana telomeres in the yeast, Saccharomyces cerevisiae. Eight yeast episomes carrying A. thaliana telomeric sequences were obtained. The plant sequences carried on two episomes, YpAtT1 and YpAtT7, were characterized in detail. The telomeric origins of YpAtT1 and YpAtT7 insert DNAs were confirmed by demonstrating that corresponding genomic sequences are preferentially degraded during exonucleolytic digestion. The isolated telomeric restriction fragments contain G-rich repeat arrays characteristic of A. thaliana telomeres, as well as subterminal telomere-associated sequences (TASs). DNA sequence analysis revealed the presence of variant telomeric repeats at the centromere-proximal border of the terminal block of telomere repeats. The TAS flanking the telomeric G-rich repeat in YpAtT7 corresponds to a repetitive element present at other A. thaliana telomeres, while more proximal sequences are unique to one telomere. The YpAtT1 TAS is unique in the Landsberg strain of A. thaliana from which the clone originated; however, the Landsberg TAS cross-hybridizes weakly to a second telomere in the strain Columbia. Restriction analysis with cytosine methylation-sensitive endonucleases indicated that both TASs are highly methylated in the genome.  相似文献   

15.
Rice proteins that bind single-stranded G-rich telomere DNA   总被引:4,自引:0,他引:4  
In this work, we have identified and characterized proteins in rice nuclear extracts that specifically bind the single-stranded G-rich telomere sequence. Three types of specific DNA-protein complexes (I, II, and III) were identified by gel retardation assays using synthetic telomere substrates consisting of two or more single-stranded TTTAGGG repeats and rice nuclear extracts. Since each complex has a unique biochemical property and differs in electrophoretic mobility, at least three different proteins interact with the G-rich telomere sequences. These proteins are called rice G-rich telomere binding protein (RGBP) and none of them show binding affinity to double-stranded telomere repeats or single-stranded C-rich sequence. Changing one or two G's to C's in the TTTAGGG repeats abolishes binding activity. RGBPs have a greatly reduced affinity for human and Tetrahymena telomeric sequence and do not efficiently bind the cognate G-rich telomere RNA sequence UUUAGGG. Like other telomere binding proteins, RGBPs are resistant to high salt concentrations. RNase sensitivity of the DNA-protein interactions was tested to investigate whether an RNA component mediates the telomeric DNA-protein interaction. In this assay, we observed a novel complex (complex III) in gel retardation assays which did not alter the mobilities or the band intensities of the two pre-existing complexes (I and II). The complex III, in addition to binding to telomeric sequences, has a binding affinity to rice nuclear RNA, whereas two other complexes have a binding affinity to only single-stranded G-rich telomere DNA. Taken together, these studies suggest that RGBPs are new types of telomere-binding proteins that bind in vitro to single-stranded G-rich telomere DNA in the angiosperms.  相似文献   

16.
Telomere-binding proteins have recently been recognised not only as necessary building blocks of telomere structure, but namely as components which are of central importance to telomere metabolism being involved in regulation of telomere length as well as in protective (capping) function of telomeres. Although the knowledge on plant telomeric DNA-binding proteins lags behind that in human and yeast, recent data show both analogies and plant-specific features in the composition and interactions of telomeric proteins. This review focuses primarily on proteins with known amino acid sequence. These can be classified into following groups: 1) the family of proteins with Myb domain at C-terminus, 2) proteins with Myb domain at N-terminus, both binding double-stranded DNA of telomeric repeats TTTAGGG, 3) the single-stranded DNA-binding proteins, and 4) other proteins that act also in non-telomeric chromatin regions. Proteins with C-terminal Myb domain reported as IBP family were previously found in human, whereas Smh family representing proteins with Myb domain at N-terminus was identified only in plants. Also RRM family of the single-stranded DNA-binding proteins is likely to be plant specific.  相似文献   

17.
We have identified and characterized protein factors from mung bean (Vigna radiata) nuclear extracts that specifically bind the single-stranded G-rich telomeric DNA repeats. Nuclear extracts were prepared from three different types of plant tissue, radicle, hypocotyl, and root, in order to examine changes in the expression patterns of telomere-binding proteins during the development of mung bean. At least three types of specific complexes (A, B, and C) were detected by gel retardation assays with synthetic telomere and nuclear extract from radicle tissue, whereas the two major faster-migrating complexes (A and B) were formed with nuclear extracts from hypocotyl and root tissues. Gel retardation assays also revealed differences in relative amount of each complex forming activity in radicle, hypocotyl, and root nuclear extracts. These data suggest that the expression of telomere-binding proteins is developmentally regulated in plants, and that the factor involved in the formation of complex C may be required during the early stages of development. The binding factors have properties of proteins and are hence designated as mung bean G-rich telomere-binding proteins (MGBP). MGBPs bind DNA substrates with three or more single-stranded TTTAGGG repeats, while none of them show binding affinity to either double-stranded or single-stranded C-rich telomeric DNA. These proteins have a lower affinity to human telomeric sequences than to plant telomeric sequences and do not exhibit a significant binding activity to Tetrahymena telomeric sequence or mutated plant telomeric sequences, indicating that their binding activities are specific to plant telomere. Furthermore, RNase treatment of the nuclear extracts did not affect the complex formation activities. This result indicates that the single-stranded telomere-binding activities may be attributed to a simple protein but not a ribonucleoprotein. The ability of MGBPs to bind specifically the single-stranded TTTAGGG repeats may suggest their in vivo functions in the chromosome ends of plants.  相似文献   

18.
Telomeric DNAs consist of tandem repeats of G-clusters such as TTAGGG and TG1-3, which are the human and yeast repeat sequences, respectively. In the yeast Saccharomyces cerevisiae, the telomeric repeats are non-nucleosomal, whereas in humans, they are organized in tightly packaged nucleosomes. However, previous in vitro studies revealed that the binding affinities of human and yeast telomeric repeat sequences to histone octamers in vitro were similar, which is apparently inconsistent with the differences in the human and yeast telomeric chromatin structures. To further investigate the relationship between telomeric sequences and chromatin structure, we examined the effect of telomeric repeats on the formation of positioned nucleosomes in vivo by indirect end-label mapping, primer extension mapping and nucleosome repeat analyses, using a defined minichromosome in yeast cells. We found that the human and yeast telomeric repeat sequences both disfavour nucleosome assembly and alter nucleosome positioning in the yeast minichromosome. We further demonstrated that the G-clusters in the telomeric repeats are required for the nucleosome-disfavouring properties. Thus, our results suggest that this inherent structural feature of the telomeric repeat sequences is involved in the functional dynamics of the telomeric chromatin structure.  相似文献   

19.
Telomeres at chromosome ends are nucleoprotein structures consisting of tandem TTAGGG repeats and a complex of proteins termed shelterin. DNA damage and repair at telomeres is uniquely influenced by the ability of telomeric DNA to form alternate structures including loops and G-quadruplexes, coupled with the ability of shelterin proteins to interact with and regulate enzymes in every known DNA repair pathway. The role of shelterin proteins in preventing telomeric ends from being falsely recognized and processed as DNA double strand breaks is well established. Here we focus instead on recent developments in understanding the roles of shelterin proteins and telomeric DNA sequence and structure in processing genuine damage at telomeres induced by endogenous and exogenous DNA damage agents. We will highlight advances in double strand break repair, base excision repair and nucleotide excision repair at telomeres, and will discuss important questions remaining in the field.  相似文献   

20.
Interstitial telomeric sequences (ITSs), telomere-like repeats at intrachromosomal sites, are common in mammals and consist of tandem repeats of the canonical telomeric repeat, TTAGGG, or a repeat similar to this. We report that the ITS in human chromosome region 22q11.2 is, in the sequenced genome database, 101 tandem repeats of the sequence TTAGGGAGG. Using the primed in situ labeling (PRINS) technique and primers against the canonical telomeric repeat (TTAGGG), we illuminated telomeric sites for all chromosomes and an ITS locus at 22q11.2. Using the TTAGGGAGG sequence, we designed PRINS primers that efficiently and specifically illuminate the 22q11.2 ITS locus without illuminating telomeric and other ITS loci. The 22q11.2 locus has more repeat units than other ITSs loci enabling an unprecedented high detection frequency for this interstitial telomere locus. The 22q11.2 is associated with hot spots for disease-related chromosome breaks for multiple disorders, such as DiGeorge syndrome and chronic myeloid leukemia. We describe our findings that the ITS at 22q11.2 is in the same area of, and proximal to the common rearrangement region of multiple disorders. We suggest that the ITS might be involved in DNA repair processes in this area to protect the chromosome from more serious damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号