首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial infections are an important cause of sea otter (Enhydra lutris) mortality, and some of these infections may originate from terrestrial and anthropogenic sources. Antimicrobials are an important therapeutic tool for management of bacterial infections in stranded sea otters and for prevention of infection following invasive procedures in free-ranging otters. In this study, susceptibility to commonly used antimicrobials was determined for 126 isolates of 15 bacterial species or groups from necropsied, live-stranded injured or sick, and apparently healthy wild sea otters examined between 1998 and 2005. These isolates included both gram-positive and gram-negative strains of primary pathogens, opportunistic pathogens, and environmental flora, including bacterial species with proven zoonotic potential. Minimal evidence of antimicrobial resistance and no strains with unusual or clinically significant multiple-drug resistance patterns were identified. Collectively, these findings will help optimize selection of appropriate antimicrobials for treatment of bacterial diseases in sea otters and other marine species.  相似文献   

2.
The sea otter (Enhydra lutris) is a popular exhibit animal in many zoos and aquariums worldwide. Captive sea otters from these populations are owned by the United States Fish and Wildlife Service (USFWS). The USFWS has requested that these sea otters be prevented from breeding in order to save captive space for wild rescued animals. Sea otters are often housed in mixed sex groups, therefore a chemical contraceptive method or surgical removal of gonads must be used to prevent potential pregnancy. The contraceptive, Suprelorin® or deslorelin, has been used in many different species to effectively suppress reproduction but duration of effect may vary not only between species but also individuals. Here, we report the effects of one to several consecutive deslorelin implants on gonadal reproductive hormones found in fecal samples from six captive sea otters (two males and four females) compared to two control otters (one male and one female) housed at three zoological institutions. We documented the longitudinal hormone signatures of many stages of the contraceptive cycle including pretreatment (PT), stimulatory phase (S), effective contraception (EC), and hormone reversal (HR) that was characterized by a return to normal hormone levels. Deslorelin was found to be an effective contraceptive in sea otters and was found to be reversible documented by a live birth following treatment, however the duration of suppression in females was much longer than expected with a 6‐month and a 1‐year implant lasting between 3 and 4 years in females. Zoo Biol. 32:307–315, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Detailed postmortem examination of southern sea otters (Enhydra lutris nereis) found along the California (USA) coast has provided an exceptional opportunity to understand factors influencing survival in this threatened marine mammal species. In order to evaluate recent trends in causes of mortality, the demographic and geographic distribution of causes of death in freshly deceased beachcast sea otters necropsied from 1998-2001 were evaluated. Protozoal encephalitis, acanthocephalan-related disease, shark attack, and cardiac disease were identified as common causes of death in sea otters examined. While infection with acanthocephalan parasites was more likely to cause death in juvenile otters, Toxoplasma gondii encephalitis, shark attack, and cardiac disease were more common in prime-aged adult otters. Cardiac disease is a newly recognized cause of mortality in sea otters and T. gondii encephalitis was significantly associated with this condition. Otters with fatal shark bites were over three times more likely to have pre-existing T. gondii encephalitis suggesting that shark attack, which is a long-recognized source of mortality in otters, may be coupled with a recently recognized disease in otters. Spatial clusters of cause-specific mortality were detected for T. gondii encephalitis (in Estero Bay), acanthocephalan peritonitis (in southern Monterey Bay), and shark attack (from Santa Cruz to Point A?o Nuevo). Diseases caused by parasites, bacteria, or fungi and diseases without a specified etiology were the primary cause of death in 63.8% of otters examined. Parasitic disease alone caused death in 38.1% of otters examined. This pattern of mortality, observed predominantly in juvenile and prime-aged adult southern sea otters, has negative implications for the overall health and recovery of this population.  相似文献   

4.
Lactation is the most energetically demanding stage of reproduction in female mammals. Increased energetic allocation toward current reproduction may result in fitness costs, although the mechanisms underlying these trade‐offs are not well understood. Trade‐offs during lactation may include reduced energetic allocation to cellular maintenance, immune response, and survival and may be influenced by resource limitation. As the smallest marine mammal, sea otters (Enhydra lutris) have the highest mass‐specific metabolic rate necessitating substantial energetic requirements for survival. To provide the increased energy needed for lactation, female sea otters significantly increase foraging effort, especially during late‐lactation. Caloric insufficiency during lactation is reflected in the high numbers of maternal deaths due to End‐Lactation Syndrome in the California subpopulation. We investigated the effects of lactation and resource limitation on maternal stress responses, metabolic regulation, immune function, and antioxidant capacity in two subspecies of wild sea otters (northern: E. l. nereis and southern: E. l. kenyoni) within the California, Washington, and Alaska subpopulations. Lactation and resource limitation were associated with reduced glucocorticoid responses to acute capture stress. Corticosterone release was lower in lactating otters. Cortisol release was lower under resource limitation and suppression during lactation was only evident under resource limitation. Lactation and resource limitation were associated with alterations in thyroid hormones. Immune responses and total antioxidant capacity were not reduced by lactation or resource limitation. Southern sea otters exhibited higher concentrations of antioxidants, immunoglobulins, and thyroid hormones than northern sea otters. These data provide evidence for allocation trade‐offs during reproduction and in response to nutrient limitation but suggest self‐maintenance of immune function and antioxidant defenses despite energetic constraints. Income‐breeding strategists may be especially vulnerable to the consequences of stress and modulation of thyroid function when food resources are insufficient to support successful reproduction and may come at a cost to survival, and thereby influence population trends.  相似文献   

5.
An indirect fluorescent antibody test (IFAT) for detection of Toxoplasma gondii infection was validated using serum from 77 necropsied southern sea otters (Enhydra lutris nereis) whose T. gondii infection status was determined through immunohistochemistry and parasite isolation in cell culture. Twenty-eight otters (36%) were positive for T. gondii by immunohistochemistry or parasite isolation or both, whereas 49 (64%) were negative by both tests. At a cutoff of 1:320, combined values for IFAT sensitivity and specificity were maximized at 96.4 and 67.3%, respectively. The area under the receiver-operating characteristic curve for the IFAT was 0.84. A titer of 1:320 was used as cutoff when screening serum collected from live-sampled sea otters from California (n = 80), Washington (n = 21), and Alaska (n = 65) for T. gondii infection. Thirty-six percent (29 out of 80) of California sea otters (E. lutris nereis) and 38% (8 out of 21) of Washington sea otters (E. lutris kenyoni) were seropositive for T. gondii, compared with 0% (0 out of 65) of Alaskan sea otters (E. lutris kenyoni).  相似文献   

6.
Although southern sea otters (Enhydra lutris nereis) are not considered prey for white sharks (Carcharodon carcharias), sharks do nonetheless bite sea otters. We analyzed spatial and temporal trends in shark bites on sea otters in California, assessing the frequency of shark bite wounds in 1,870 carcasses collected since 1985. The proportion of stranded sea otters having shark bites has increased sharply since 2003, and white shark bites now account for >50% of recovered carcasses. The trend was most pronounced in the southern part of the range, from Estero Bay to Point Conception, where shark bite frequency has increased eightfold. Seasonal trends were also evident: most shark‐bitten carcasses are recovered in late summer and fall; however, the period of elevated shark bite frequency has lengthened. The causes of these trends are unclear, but possible contributing factors include increased white shark abundance and/or changes in white shark behavior and distribution. In particular, the spatiotemporal patterns of shark‐bitten sea otters match increases in pinniped populations, and the increased availability of marine mammal prey for white sharks may have led to more sharks spending more time in nearshore waters utilized by both sea otters and pinnipeds.  相似文献   

7.
Marine mammals are at risk for infection by fecal-associated zoonotic pathogens when they swim and feed in polluted nearshore marine waters. Because of their tendency to consume 25-30% of their body weight per day in coastal filter-feeding invertebrates, southern sea otters (Enhydra lutris nereis) can act as sentinels of marine ecosystem health in California. Feces from domestic and wildlife species were tested to determine prevalence, potential virulence, and diversity of selected opportunistic enteric bacterial pathogens in the Monterey Bay region. We hypothesized that if sea otters are sentinels of coastal health, and fecal pollution flows from land to sea, then sea otters and terrestrial animals might share the same enteric bacterial species and strains. Twenty-eight percent of fecal samples tested during 2007-2010 were positive for one or more potential pathogens. Campylobacter spp. were isolated most frequently, with an overall prevalence of 11%, followed by Vibrio cholerae (9%), Salmonella spp. (6%), V. parahaemolyticus (5%), and V. alginolyticus (3%). Sea otters were found positive for all target bacteria, exhibiting similar prevalences for Campylobacter and Salmonella spp. but greater prevalences for Vibrio spp. when compared to terrestrial animals. Fifteen Salmonella serotypes were detected, 11 of which were isolated from opossums. This is the first report of sea otter infection by S. enterica Heidelberg, a serotype also associated with human clinical disease. Similar strains of S. enterica Typhimurium were identified in otters, opossums, and gulls, suggesting the possibility of land-sea transfer of enteric bacterial pathogens from terrestrial sources to sea otters.  相似文献   

8.
Oral ulcerations and plaques with epithelial eosinophilic intranuclear inclusions were observed in northern sea otters (Enhydra lutris kenyoni) that died or were admitted for rehabilitation after the 1989 Exxon Valdez oil spill (EVOS) in Alaska, USA. Transmission electron microscopy demonstrated the presence of herpesviral virions. Additionally, a serologic study from 2004 to 2005 found a high prevalence of exposure to a herpesvirus in live-captured otters. Tissues from 29 otters after the EVOS and nasal swabs from 83 live-captured otters in the Kodiak Archipelago were tested for herpesviral DNA. Analysis identified a novel herpesvirus in the gamma subfamily, most closely related to Mustelid herpesvirus-1 from badgers. Results indicated that this herpesvirus is associated with ulcerative lesions but is also commonly found in secretions of healthy northern sea otters.  相似文献   

9.
The association among anthropogenic environmental disturbance, pathogen pollution and the emergence of infectious diseases in wildlife has been postulated, but not always well supported by epidemiologic data. Specific evidence of coastal contamination of the marine ecosystem with the zoonotic protozoan parasite, Toxoplasma gondii, and extensive infection of southern sea otters (Enhydra lutris nereis) along the California coast was documented by this study. To investigate the extent of exposure and factors contributing to the apparent emergence of T. gondii in southern sea otters, we compiled environmental, demographic and serological data from 223 live and dead sea otters examined between 1997 and 2001. The T. gondii seroprevalence was 42% (49/116) for live otters, and 62% (66/107) for dead otters. Demographic and environmental data were examined for associations with T. gondii seropositivity, with the ultimate goal of identifying spatial clusters and demographic and environmental risk factors for T. gondii infection. Spatial analysis revealed clusters of T. gondii-seropositive sea otters at two locations along the coast, and one site with lower than expected T. gondii seroprevalence. Risk factors that were positively associated with T. gondii seropositivity in logistic regression analysis included male gender, older age and otters sampled from the Morro Bay region of California. Most importantly, otters sampled near areas of maximal freshwater runoff were approximately three times more likely to be seropositive to T. gondii than otters sampled in areas of low flow. No association was found between seropositivity to T. gondii and human population density or exposure to sewage. This study provides evidence implicating land-based surface runoff as a source of T. gondii infection for marine mammals, specifically sea otters, and provides a convincing illustration of pathogen pollution in the marine ecosystem.  相似文献   

10.
Carrying capacity (K) for the California sea otter ( Enhydra lutris nereis ) was estimated as a product of the density of sea otters at equilibrium within a portion of their existing range and the total area of available habitat. Equilibrium densities were determined using the number of sea otters observed during spring surveys in 1994, 1995, and 1996 in each of three habitat types where sea otters currently exist. Potential sea otter habitat was defined as from the California coastline to the 40-m isobath and classified as rocky, sandy, or mixed habitat according to the amount of kelp and rocky substrate in the area. The amount of habitat available to sea otters in California was estimated using a Geographic Information Systems (GIS) program. The estimated mean number of sea otters that could be supported by the marine environment to a depth of 40 m in California was 15,941 (95% CI 13,538–18,577). The GIS-based approach incorporated detailed bathymetric contours, produced repeatable and accurate estimates, and served as an innovative method of measuring sea otter habitat. We believe the approach described in this paper represents the best available information on how a sea otter population at equilibrium would be distributed along the California coast.  相似文献   

11.
Complex interactions between protected populations may challenge the recovery of whole ecosystems. In California, white sharks (Carcharodon carcharias) mistargeting southern sea otters (Enhydra lutris nereis) are an emergent impact to sea otter recovery, inhibiting the broader ecosystem restoration sea otters might provide. Here, we integrate and analyze tracking and stranding data to compare the phenology of interactions between white sharks and their targeted prey (elephant seals, Mirounga angustirostris) with those of mistargeted prey (sea otters, humans). Pronounced seasonal peaks in shark bites to otters and humans overlap in the late boreal summer, immediately before the annual adult white shark migration to elephant seal rookeries. From 1997 to 2017, the seasonal period when sharks bite otters expanded from 2 to 8 months of the year and occurred primarily in regions where kelp cover declined. Immature and male otters, demographics most associated with range expansion, were disproportionately impacted. While sea otters are understood to play a keystone role in kelp forests, recent ecosystem shifts are revealing unprecedented bottom‐up and top‐down interactions. Such shifts challenge ecosystem management programs that rely on static models of species interactions.  相似文献   

12.
Helicobacter species are widely distributed in the gastrointestinal system of humans and many animal taxa. Investigations of natural infections are essential to elucidating their role within the host. The feces of fur seals Arctocephalus pusillus doriferus and sea lions Neophoca cinerea from 3 separate captive populations, as well as a wild colony from Kangaroo Island, Australia, were examined for the occurrence of Helicobacter spp. The feces from several wild silver gulls Larus novahollandiae were also investigated. As detected by PCR, 18 of 21 samples from captive and 12 of 16 samples from wild seals were positive for Helicobacter spp. Three species were identified in these animals. Whilst one possibly novel type was identified from wild fur seals, the majority of wild and captive individuals had the same species. This species also occurred in more than 1 seal type and in silver gulls, and shared a 98.1 to 100% identity to other Helicobacter spp. from harp seals and sea otters. A similar sequence type to species identified from cetaceans was also detected in several captive seals. This study reports for the first time the presence of Helicobacter spp. in wild and captive seals and demonstrates the diversity and broad-host range of these organisms in the marine host.  相似文献   

13.
H. Kruuk    D. Balharry 《Journal of Zoology》1990,220(3):405-415
Otters Lutra lutra L. which feed in the sea in Scotland frequently wash in fresh water. Experiments were carried out with otter pelts and with captive otters, to study the biological function of this behaviour. In vitro , the fur of otters lost much of its thermal insulation after five soakings in sea water and subsequent drying. Otters were fed in sea water or fresh water, with or without simultaneous access to alternative fresh water. When fed in sea water, otters used the alternative fresh water much more than when fed in fresh water, they were more reluctant to enter sea water if no alternative fresh water was present, and without this alternative fresh water they showed signs of hypothermia. After swimming in sea water the animals spent more time grooming and rolling. Without fresh water present the otters' fur lost its capacity for retaining air under water. These observations suggest an explanation for the restricted distribution of otters living along the coast, and for the lack of use of marine habitats by small mammals in general.  相似文献   

14.
Boat-based surveys have been commonly used to monitor sea otter populations, but there has been little quantitative work to evaluate detection biases that may affect these surveys. We used ground-based observers to investigate sea otter detection probabilities in a boat-based survey of Prince William Sound, Alaska. We estimated that 30% of the otters present on surveyed transects were not detected by boat crews. Approximately half (53%) of the undetected otters were missed because the otters left the transects, apparently in response to the approaching boat. Unbiased estimates of detection probabilities will be required for obtaining unbiased population estimates from boat-based surveys of sea otters. Therefore, boat-based surveys should include methods to estimate sea otter detection probabilities under the conditions specific to each survey. Unbiased estimation of detection probabilities with ground-based observers requires either that the ground crews detect all of the otters in observed subunits, or that there are no errors in determining which crews saw each detected otter. Ground-based observer methods may be appropriate in areas where nearly all of the sea otter habitat is potentially visible from ground-based vantage points.  相似文献   

15.
Pedro Rui  Beja 《Journal of Zoology》1991,225(1):141-152
The diet of otters was studied in closely associated freshwater, brackish and marine habitats, from spraints collected on the Portuguese south-west coast over an 18-month period. In areas where marine prey was the only available resource, diet was dominated by blennies, wrasses and gobies, but other prey was taken in areas near coastal lagoons, marshes and estuaries. Eels and amphibians were considered the typical prey of freshwater habitats, and grey mullet the typical prey of brackish water habitats. If the inland habitats near the coast were large enough, otters preferred to forage there rather than in the sea. In one area where otters alternatively used marine and inland habitats, the former were used most extensively in autumn and winter, and the latter in spring and summer. It is suggested that otters prefer to forage inland rather than in the sea.  相似文献   

16.
“Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine “harmful algal bloom” in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.  相似文献   

17.
Toxoplasma gondii affects a wide variety of hosts including threatened southern sea otters (Enhydra lutris nereis) which serve as sentinels for the detection of the parasite's transmission into marine ecosystems. Toxoplasmosis is a major cause of mortality and contributor to the slow rate of population recovery for southern sea otters in California. An updated seroprevalence analysis showed that 52% of 305 freshly dead, beachcast sea otters and 38% of 257 live sea otters sampled along the California coast from 1998 to 2004 were infected with T. gondii. Areas with high T. gondii exposure were predominantly sandy bays near urban centres with freshwater runoff. Genotypic characterisation of 15 new T. gondii isolates obtained from otters in 2004 identified only X alleles at B1 and SAG1. A total of 38/50 or 72% of all otter isolates so far examined have been infected with a Type X strain. Type X isolates were also obtained from a Pacific harbor seal (Phoca vitulina) and California sea lion (Zalophus californianus). Molecular analysis using the C8 RAPD marker showed that the X isolates were more genetically heterogeneous than archetypal Type I, II and III genotypes of T. gondii. The origin and transmission of the Type X T. gondii genotype are not yet clear. Sea otters do not prey on known intermediate hosts for T. gondii and vertical transmission appears to play a minor role in maintaining infection in the populations. Therefore, the most likely source of infection is by infectious, environmentally resistant oocysts that are shed in the feces of felids and transported via freshwater runoff into the marine ecosystem. As nearshore predators, otters serve as sentinels of protozoal pathogen flow into the marine environment since they share the same environment and consume some of the same foods as humans. Investigation into the processes promoting T. gondii infections in sea otters will provide a better understanding of terrestrial parasite flow and the emergence of disease at the interface between wildlife, domestic animals and humans.  相似文献   

18.
ABSTRACT We estimated carrying capacity for sea otters (Enhydra lutris) in the coastal waters of British Columbia, Canada, by characterizing habitat according to the complexity of nearshore intertidal and sub-tidal contours. We modeled the total area of complex habitat on the west coast of Vancouver Island by first calculating the complexity of the Checleset Bay-Kyuquot Sound (CB-KS) region, where sea otters have been at equilibrium since the mid-1990s. We then identified similarly complex areas on the west coast of Vancouver Island (WCVI model), and adapted the model to identify areas of similar complexity along the entire British Columbia coast (BC model). Using survey data from the CB-KS region, we calculated otter densities for the habitat predicted by the 2 models. The density estimates for CB-KS were 3.93 otters/km2 and 2.53 otters/km2 for the WCVI and BC models, respectively, and the resulting 2 estimates of west coast of Vancouver Island complex habitat carrying capacity were not significantly different (WCVI model: 5,123, 95% CI = 3,337–7,104; BC model: 4,883, 95% CI = 3,223–6,832). The BC model identified the region presently occupied by otters on the central British Columbia coast, but the amount of coast-wide habitat it predicted (5,862 km2) was relatively small, and the associated carrying capacity estimate (14,831, 95% CI = 9,790–20,751) was low compared to historical accounts. We suggest that our model captured a type of high-quality or optimum habitat prevalent on the west coast of Vancouver Island, typified by the CB-KS region, and that suitable sea otter habitat elsewhere on the coast must include other habitat characteristics. We therefore calculated a linear, coast-wide carrying capacity of 52,459 sea otters (95% CI = 34,264–73,489)—a more realistic upper limit to sea otters in British Columbia. Our carrying capacity estimates are helping set population recovery targets for sea otters in Canada, and our habitat predictions represent a first step in Critical Habitat identification. This habitat-based approach to estimating carrying capacity is likely suitable for other nonmigratory, density-dependent species.  相似文献   

19.
Sea otters (Enhydra lutris kenyoni) historically occurred in Washington State, USA, until their local extinction in the early 1900s as a result of the maritime fur trade. Following their extirpation, 59 sea otters were translocated from Amchitka Island, Alaska, USA, to the coast of Washington, with 29 released at Point Grenville in 1969 and 30 released at La Push in 1970. The Washington Department of Fish and Wildlife has outlined 2 main objectives for sea otter recovery: a target population level and a target geographic distribution. Recovery criteria are based on estimates of population abundance, equilibrium abundance (K), and geographic distribution; therefore, estimates of these parameters have important management implications. We compiled available survey data for sea otters in Washington State since their translocation (1977–2019) and fit a Bayesian state-space model to estimate past and current abundance, and equilibrium abundance at multiple spatial scales. We then used forward projections of population dynamics to explore potential scenarios of range recolonization and as the basis of a sensitivity analysis to evaluate the relative influence of movement behavior, frontal wave speed, intrinsic growth, and equilibrium density on future population recovery potential. Our model improves upon previous analyses of sea otter population dynamics in Washington by partitioning and quantifying sources of estimation error to estimate population dynamics, by providing robust estimates of K, and by simulating long-term population growth and range expansion under a range of realistic parameter values. Our model resulted in predictions of population abundance that closely matched observed counts. At the range-wide scale, the population size in our model increased from an average of 21 independent sea otters (95% CI = 13–29) in 1977 to 2,336 independent sea otters (95% CI = 1,467–3,359) in 2019. The average estimated annual growth rate was 12.42% and varied at a sub-regional scale from 6.42–14.92%. The overall estimated mean K density of sea otters in Washington was 1.71 ± 0.90 (SD) independent sea otters/km2 of habitat (1.96 ± 1.04 sea otters/km2, including pups), and estimated densities within the current range correspond on average to 87% of mean sub-regional equilibrium values (range = 66–111%). The projected value of K for all of Washington was 5,287 independent sea otters (95% CI = 2,488–8,086) and 6,080 sea otters including pups (95% CI = 2,861–9,300), assuming a similar range of equilibrium densities in currently un-occupied habitats. Sensitivity analysis of simulations of sea otter population growth and range expansion suggested that mean K density estimates in currently occupied sub-regions had the largest impact on predicted future population growth (r2 = 0.52), followed by the rate of southward range expansion (r2 = 0.26) and the mean K density estimate of currently unoccupied sub-regions to the south of the current range (r2 = 0.04). Our estimates of abundance and sensitivity analysis of simulations of future population abundance and geographic range help determine population status in relation to population recovery targets and identify the most influential parameters affecting future population growth and range expansion for sea otters in Washington State.  相似文献   

20.
Sea otters, Enhydra lutris, were once abundant along the nearshore areas of the North Pacific. The international maritime fur trade that ended in 1911 left 13 small remnant populations with low genetic diversity. Subsequent translocations into previously occupied habitat resulted in several reintroduced populations along the coast of North America. We sampled sea otters between 2008 and 2011 throughout much of their current range and used 19 nuclear microsatellite markers to evaluate genetic diversity, population structure, and connectivity between remnant and reintroduced populations. Average genetic diversity within populations was similar: observed heterozygosity 0.55 and 0.53, expected heterozygosity 0.56 and 0.52, unbiased expected heterozygosity 0.57 and 0.52, for reintroduced and remnant populations, respectively. Sea otter population structure was greatest between the Northern and Southern sea otters with further structuring in Northern sea otters into Western, Central, and Southeast populations (including the reintroduced populations). Migrant analyses suggest the successful reintroductions and growth of remnant groups have enhanced connectivity and gene flow between populations throughout many of the sampled Northern populations. We recommend that future management actions for the Southern sea otter focus on future reintroductions to fill the gap between the California and Washington populations ultimately restoring gene flow to the isolated California population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号