首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pan TL  Wang PW  Huang CC  Yeh CT  Hu TH  Yu JS 《Journal of Proteomics》2012,75(15):4676-4692
Poor prognoses have long been associated with the high relapse and metastasis of human hepatocellular carcinoma (HCC). To achieve long-term survival, it is necessary to identify new HCC biomarkers and investigate their roles in cell mobility and invasiveness. Of note, overexpression of vimentin (Vim) was significantly correlated with tumor nuclear grade (p=0.01) and the invasive potential, indicating that Vim may be a promising candidate in regulating HCC metastasis. RNA interference-mediated silencing of Vim (siVim) suppressed the invasive and migratory propensity, and matrix metalloproteinase (MMP)-9 activity, and elicited morphological changes in poorly differentiated SK-Hep-1 cells. Moreover, we performed a comprehensive proteomic analysis to survey global protein changes mediated by siVim in SK-Hep-1 cells. Significant changes in cytoskeleton protein but not messenger RNA levels encoding these targeted proteins were observed. All of the data in the current study and a network analysis implied that abolition of Vim may disturb the expression and stability of various cytoskeletal proteins through promoting the ubiquitin system, resulting in impaired cell adhesion and motility. Collectively, an integrated approach represents a modality to explore novel relationships in a proteome complex and highlights the functional roles of Vim in HCC metastasis. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   

2.
Endometrial carcinoma is one of the most common malignancies of the female genital tract, and there is an urgent need for discovery of novel factors for prognostic assessment and therapeutic targets to endometrial carcinoma. Herein a two-dimensional gel electrophoresis and MALDI-Q-TOF MS/MS-based proteomics approach was used to identify differentially expressed proteins in endometrial carcinoma. Of the 99 proteins identified, cyclophilin A was one of the most significantly altered proteins, and its overexpression was confirmed using RT-PCR and Western blot analyses. Immunohistochemistry suggested a link between cyclophilin A expression and poor differentiation and decreased survival (p < 0.01). Knockdown of cyclophilin A expression by RNA interference led to the significant suppression of the cell growth and the induction of apoptosis in endometrial carcinoma HEC-1-B cells in vitro (p < 0.01) and the inhibition of tumor growth in vivo (p < 0.01). These data suggest that cyclophilin A may serve as a novel prognostic factor and possibly an attractive therapeutic target for endometrial carcinoma.  相似文献   

3.
Using primary cell cultures of human endometrial stromal cells (ES cells), we investigated the role of phospholipase D (PLD) in 8-Br-cAMP-induced decidualization, which involves morphological and biological differentiation processes. When treated with 0.5 mM 8-Br-cAMP for 12 days, ES cells were transformed into a decidualized morphology and produced significant amounts of prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1). Simultaneously, the activity and expression levels of PLD1 increased. In addition, removal of 8-Br-cAMP from decidualized ES cells restored the undifferentiated state, and this was accompanied by decreases in PLD1 promoter activity and PLD1 expression. Overexpression of dominant negative (DN)-PLD1 inhibited the morphological changes induced by 0.5 mM 8-Br-cAMP, whereas PLD1 overexpression induced morphological changes in the absence of 0.5 mM 8-Br-cAMP treatment. Moreover, knockdown of PLD1 by siRNA and blockage of PLD by treatment with 0.3% 1-butanol decreased PRL/IGFBP1 mRNA expression, whereas PLD1 overexpression increased PRL/IGFBP1 mRNA expression. Treatment of ES cells with phosphatidic acid (PA) for 3 days induced PRL mRNA expression and morphological changes, which implies that PA is an end-product of PLD activation-induced decidualization. In addition, pretreatment of ES cells with mepacrine decreased PRL/IGFBP1 expression and inhibited morphological change, whereas pretreatment with propranolol caused no changes, as compared to cAMP-treated cells, which suggests that PA induces decidualization through phospholipase A2 (PLA2G1B). Taken together, these results suggest that PLD1 regulates 8-Br-cAMP-induced decidualization through PLA2G1B, and that PLD1 upregulation is essential for the decidualization of ES cells.  相似文献   

4.
Glucocorticoids can dampen inflammatory responses by inhibiting neutrophil recruitment to tissue sites. The detailed mechanism by which glucocorticoids exert this affect on neutrophils is unknown. L-selectin is a leukocyte cell surface receptor that is implicated in several steps of neutrophil recruitment. Recently, several studies have shown that systemic treatment of animals and humans with glucocorticoids induces decreased L-selectin expression on neutrophils, suggesting one mechanism by which inflammation may be negatively regulated. However, when neutrophils are treated in vitro with glucocorticoids, no effect on L-selectin expression is observed. Thus, the existence of an additional mediator is plausible. In this study, we investigate whether annexin 1 (ANX1), a recognized second messenger of glucocorticoids, could be such a mediator. We show that ANX1 induces a dose- and time-dependent decrease in L-selectin expression on both peripheral blood neutrophils and monocytes but has no effect on lymphocytes. The loss of L-selectin from neutrophils is due to shedding that is mediated by a cell surface metalloprotease ("sheddase"). Using cell shape and a beta(2) integrin activation epitope, we show that the ANX1-induced shedding of L-selectin appears to occur without overt cell activation. These data may provide the basis for further understanding of mechanisms involved in the down-regulation of inflammatory responses.  相似文献   

5.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40-50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H(2)O(2)-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependent on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.  相似文献   

6.
7.
8.
S100A4, a mediator of metastasis   总被引:19,自引:0,他引:19  
  相似文献   

9.
It has been shown that deletion of the chemokine receptor, CXCR4, causes disordered angiogenesis in mouse models. In the present studies, we examined the distribution and trafficking of CXCR4 in human endothelial cells, tested their responses to the CXCR4 ligand, SDF-1, and asked whether endothelial cell CXCR4 can serve as a cell surface receptor for the binding of viruses. The results show that CXCR4 is present on endothelial cells from coronary arteries, iliac arteries and umbilical veins (HUVEC), but expression was heterogeneous, with some cells expressing CXCR4 on their surface, while others did not. Addition of SDF-1 caused a rapid decrease in CXCR4 surface expression. It also caused CXCR4-mediated activation of MAPK, release of PGI(2), endothelial migration, and the formation of capillary-like structures by endothelial cells in culture. Co-culture of HUVEC with lymphoid cells that were chronically infected with a CD4-independent/CXCR4-tropic variant of HIV-2 resulted in the formation of multinucleated syncytia. Formation of the syncytia was inhibited by each of several different CXCR4 antibodies. Thus, our findings indicate: (1) that CXCR4 is widely expressed on human endothelial cells; (2) the CXCR4 ligand, SDF-1, can evoke a wide variety of responses from human endothelial cells; and (3) CXCR4 on endothelial cells can serve as a receptor for isolates of HIV that can utilize chemokine receptors in the absence of CD4.  相似文献   

10.
11.
Cycloheximide acts at the large subunit of the ribosome to inhibit translation. Here we report that ubiquitin levels are critical for the survival of Saccharomyces cerevisiae cells in the presence of cycloheximide: ubiquitin overexpression confers resistance to cycloheximide, while a reduced ubiquitin level confers sensitivity. Consistent with these findings, ubiquitin is unstable in yeast (t(1/2) = 2 h) and is rapidly depleted upon cycloheximide treatment. Cycloheximide does not noticeably enhance ubiquitin turnover, but serves principally to block ubiquitin synthesis. Cycloheximide also induces UBI4, the polyubiquitin gene. The cycloheximide-resistant phenotype of ubiquitin overexpressors is also characteristic of partial-loss-of-function proteasome mutants. Ubiquitin is stabilized in these mutants, which may account for their cycloheximide resistance. Previous studies have reported that ubiquitin is destabilized in the absence of Ubp6, a proteasome-associated deubiquitinating enzyme, and that ubp6 mutants are hypersensitive to cycloheximide. Consistent with the model that cycloheximide-treated cells are ubiquitin deficient, the cycloheximide sensitivity of ubp6 mutants can be rescued either by ubiquitin overexpression or by mutations in proteasome subunit genes. These results also show that ubiquitin wasting in ubp6 mutants is proteasome mediated. Ubiquitin overexpression rescued cells from additional translational inhibitors such as anisomycin and hygromycin B, suggesting that ubiquitin depletion may constitute a widespread mechanism for the toxicity of translational inhibitors.  相似文献   

12.
Cyclooxygenases (COXs) catalyze the conversion of arachidonic acid to eicosanoids, which mediate a variety of biological actions involved in vascular pathophysiology. In the present study, we investigated the role of lipid peroxidation products in the up-regulation of COX-2, an inducible isoform responsible for high levels of prostaglandin production during inflammation and immune responses. COX-2 was found to colocalize with 4-hydroxy-2-nonenal (HNE), a major lipid peroxidation-derived aldehyde, in foamy macrophages within human atheromatous lesions, suggesting that COX-2 expression may be associated with the accumulation of lipid peroxidation products within macrophages. To test the hypothesis that lipid peroxidation products might be involved in the regulation of prostanoid biosynthesis, we conducted a screen of oxidized fatty acid metabolites and found that, among the compounds tested, only HNE showed inducibility of the COX-2 protein in RAW264.7 macrophages. In addition, intraperitoneal administration of HNE resulted in an increase in cell numbers in the peritoneal cavity that was associated with significant increases in the peritoneal and tissue levels of COX-2 in mice. To understand the possible signaling mechanism underlying the inducing effect of HNE on COX-2 up-regulation, we examined the phosphorylation events that may lead to COX-2 induction and found that HNE did not stimulate the induction of nitric oxide synthase and activation of NF-kappaB but significantly activated p38 mitogen-activated protein kinase and its upstream kinase in RAW264.7 macrophages. Tyrosine kinases, such as the epidermal growth factor-like and Src family tyrosine kinases, appeared to mediate the stabilization of COX-2 mRNA via the p38 mitogen-activated protein kinase pathway. These findings suggest that HNE accumulated in macrophages/foam cells may represent an inflammatory mediator that plays a role in stimulation of the inflammatory response and contributes to the progression of atherogenesis.  相似文献   

13.
Endocytosis occurs independently of annexin VI in human A431 cells   总被引:5,自引:1,他引:5       下载免费PDF全文
Annexin VI is one of a family of calcium-dependent phospholipid-binding proteins. Although the function of this protein is not known, various physiological roles have been proposed, including a role in the budding of clathrin-coated pits (Lin et al., 1992. Cell. 70:283-291.). In this study we have investigated a possible endocytotic role for annexin VI in intact cells, using the human squamous carcinoma cell line A431, and report that these cells do not express endogenous annexin VI, as judged by Western and Northern blotting and PCR/Southern blotting. To examine whether endocytosis might in some way be either facilitated or inhibited by the presence of annexin VI, a series of A431 clones were isolated in which annexin VI expression was achieved by stable transfection. These cells expressed annexin VI at similar levels to other human cell types. Using assays for endocytosis and recycling of the transferrin receptor, we report that each of these cellular processes occurs with identical kinetics in both transfected and wild- type A431 cells. In addition, purified annexin VI failed to support the scission of coated pits in permeabilized A431 cells. We conclude that annexin VI is not an essential component of the endocytic pathway, and that in A431 cells, annexin VI fails to exert any influence on internalization and recycling of the transferrin receptor.  相似文献   

14.
As efficient catalysts, enzymes help maintain a variety of biological and chemical transformations necessary for cellular metabolism and normal physiology. Unfortunately, pathogenic microbes can also exploit enzymatic reactions in an attempt to spread infection. Cytosolic phospholipase A2 (cPLA2) is an enzyme that is responsible for the hydrolysis of membrane phospholipids such as phosphatidylcholine. Following activation, cPLA2 cleaves phosphatidylcholine to yield free fatty acid and lysophosphatidylcholine. Both of these products and their downstream metabolites initiate a network of signalling cascades that influence cellular viability and inflammation. Recent observations have shown that viral and bacterial agents often target this intricate organization of signalling molecules. This review briefly discusses the role of cPLA2 in the biological response to disease‐causing pathogens and injury, the immunological process and tumour progression.  相似文献   

15.
Superoxide dismutase (SOD) 3, one of the SOD isozymes, plays a pivotal role in extracellular redox homeostasis. The expression of SOD3 is regulated by epigenetics in human lung cancer A549 cells and human monocytic THP-1 cells; however, the molecular mechanisms governing SOD3 expression have not been elucidated in detail. Ten-eleven translocation (TET), a dioxygenase of 5-methylcytosine (5mC), plays a central role in DNA demethylation processes and induces target gene expression. In the present study, TET1 expression was abundant in U937 cells, but its expression was weakly expressed in A549 and THP-1 cells. These results are consistent with the expression pattern of SOD3 and its DNA methylation status in these cells. Moreover, above relationship was also observed in human breast cancer cells, human prostate cancer cells, and human skin fibroblasts. The overexpression of TET1-catalytic domain (TET1-CD) induced the expression of SOD3 in A549 cells, and this was accompanied by the direct binding of TET1-CD to the SOD3 promoter region. Furthermore, in TET1-CD-transfected A549 cells, the level of 5-hydroxymethylcytosine within that region was significantly increased, whereas the level of 5mC was decreased. The results of the present study demonstrate that TET1 might function as one of the key molecules in SOD3 expression through its 5mC hydroxylation in A549 cells.  相似文献   

16.
Adenomyosis, previously termed “endometriosis interna,” is a widespread disease affecting the female reproductive system and frequently resulting in infertility in women. The aim of this work was to examine the properties of endometrial mesenchymal stem cells (eMSCs) from a patient with adenomyosis. We established the cell line from a patient with adenomyosis and compared the properties of these cells with cells derived from a healthy donor. It was found that patient-derived eMSCs and eMSCs from healthy donors had a fibroblast-like morphology and did not differ in expression of surface markers and adipogenic potential. Karyotype analysis of G-banded metaphase chromosomes was performed in cells of both lines at the six or seventh passages. Cells from the healthy donor mostly had normal karyotype. Karyotype of eMSCs from the patient with adenomyosis usually had chromosomal abnormalities. The abnormalities concerned aneuploidy and nonrandom chromosomes breaks more often involving chromosomes 7 and 11. Although karyotype instability may be a sign of cell transformation, the patient-derived eMSCs stopped cycling after about 26 passages and entered into replicative senescence. This shows that the karyotypic abnormalities that we observed in adenomyosis-derived eMSCs are not relevant to the cell transformation and immortalization in vitro.  相似文献   

17.
Dowling VA  Sheehan D 《Proteomics》2006,6(20):5597-5604
Ecotoxicology describes a three-way relationship between ecosystems, chemical pollutants and living organisms. It is predicated on the fact that chemical pollution can exert toxic effects on organisms at the individual and population levels. These toxic effects may provide important information to supplement chemical analysis of environmental samples and aid in assessing the environmental quality of specific ecosystems. Traditionally, effects have been detected by means of biomarkers which, of necessity, were often molecules or processes known to be affected by pollutants. Proteomics provides a means of achieving high-throughput analysis of effects on protein populations and sub-populations with the potential to identify novel biomarkers. This review summarises the main approaches currently used in this area and assesses the potential of proteomics for identification of novel toxicity targets.  相似文献   

18.
Cancer-related inflammation profoundly affects tumor progression. Tumor-associated macrophages (TAMs) are known regulators of that inflammation, but the factors that initiate cancer-related inflammation are poorly understood. Tumor invasiveness and poor clinical outcome are linked to increased expression of cell surface-associated vacuolar adenosine triphosphatases. The a2 isoform vacuolar adenosine triphosphatase is found on the surface on many solid tumors, and we have identified a peptide cleaved from a2 isoform vacuolar adenosine triphosphatase called a2NTD. a2NTD has properties necessary to induce monocytes into a pro-oncogenic TAM phenotype. The peptide upregulated both pro- and anti-inflammatory mediators. These included IL-1β and IL-10, which are important in promoting inflammation and immune escape by tumor cells. The secretion of inflammatory cytokine IL-1β was dependent on ATP, K(+) efflux, and reactive oxygen species, all mediators that activate the inflammasome. These findings describe a mechanism by which tumor cells affect the maturation of TAMs via a nontraditional cytokine-like signal, the a2NTD peptide.  相似文献   

19.
20.
Grb2 is a key mediator of helicobacter pylori CagA protein activities   总被引:11,自引:0,他引:11  
CagA delivered from Helicobacter pylori into gastric epithelial cells undergoes tyrosine phosphorylation and induces host cell morphological changes. Here we show that CagA can interact with Grb2 both in vitro and in vivo, which results in the activation of the Ras/MEK/ERK pathway and leads to cell scattering as well as proliferation. Importantly, this ability of CagA is independent from the tyrosine phosphorylation, which occurs within the five repeated EPIYA sequences (PY region) of CagA. However, the PY region appears to be indispensable for the Grb2 binding and induction of the cellular responses. Thus, intracellular CagA via its binding to Grb2 may act as a transducer for stimulating growth factor-like downstream signals which lead to cell morphological changes and proliferation, the causes of H. pylori-induced gastric hyperplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号