首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graft-vs-host disease (GVHD) is caused by a donor T cell anti-host reaction that evolves over several weeks to months, suggesting a requirement for persistent alloreactive T cells. Using the C3H.SW anti-C57BL/6 (B6) mouse model of human GVHD directed against minor histocompatibility Ags, we found that donor CD8(+) T cells secreting high levels of IFN-gamma in GVHD B6 mice receiving C3H.SW naive CD8(+) T cells peaked by day 14, declined by day 28 after transplantation, and persisted thereafter, corresponding to the kinetics of a memory T cell response. Donor CD8(+) T cells recovered on day 42 after allogeneic bone marrow transplantation expressed the phenotype of CD44(high)CD122(high)CD25(low), were able to homeostatically survive in response to IL-2, IL-7, and IL-15 and rapidly proliferated upon restimulation with host dendritic cells. Both allogeneic effector memory (CD44(high)CD62L(low)) and central memory (CD44(high)CD62L(high)) CD8(+) T cells were identified in B6 mice with ongoing GVHD, with effector memory CD8(+) T cells as the dominant (>80%) population. Administration of these allogeneic memory CD8(+) T cells into secondary B6 recipients caused virulent GVHD. A similar allogeneic memory CD4(+) T cell population with the ability to mediate persistent GVHD was also identified in BALB/b mice receiving minor histocompatibility Ag-mismatched B6 T cell-replete bone marrow transplantation. These results indicate that allogeneic memory T cells are generated in vivo during GVH reactions and are able to cause GVHD, resulting in persistent host tissue injury. Thus, in vivo blockade of both alloreactive effector and memory T cell-mediated host tissue injury may prove to be valuable for GVHD prevention and treatment.  相似文献   

2.
ICOS, a CD28 family member expressed on activated CD4(+) and CD8(+) T cells, plays important roles in T cell activation and effector function. Here we studied the role of ICOS in graft-vs-host disease (GVHD) mediated by CD4(+) or CD8(+) T cells in allogeneic bone marrow transplantation. In comparison of wild-type and ICOS-deficient T cells, we found that recipients of ICOS(-/-) CD4(+) T cells exhibited significantly less GVHD morbidity and delayed mortality. ICOS(-/-) CD4(+) T cells had no defect in expansion, but expressed significantly less Fas ligand and produced significantly lower levels of IFN-gamma and TNF-alpha. Thus, ICOS(-/-) CD4(+) T cells were impaired in effector functions that lead to GVHD. In contrast, recipients of ICOS(-/-) CD8(+) T cells exhibited significantly enhanced GVHD morbidity and accelerated mortality. In the absence of ICOS signaling, either using ICOS-deficient donors or ICOS ligand-deficient recipients, the levels of expansion and Tc1 cytokine production of CD8(+) T cells were significantly increased. The level of expansion was inversely correlated with the level of apoptosis, suggesting that increased ability of ICOS(-/-) CD8(+) T cells to induce GVHD resulted from the enhanced survival and expansion of those cells. Our findings indicate that ICOS has paradoxical effects on the regulation of alloreactive CD4(+) and CD8(+) T cells in GVHD.  相似文献   

3.
YD Joo  WS Lee  HJ Won  SM Lee  HR Kim  JK Park  SG Park  IW Choi  I Choi  SK Seo 《Cytokine》2012,60(1):277-283
The immunoregulatory effects of granulocyte colony-stimulating factor (G-CSF) on allogeneic peripheral blood cell transplantation (PBCT) have been demonstrated to reduce acute graft-versus-host disease (GVHD). However, the underlying mechanism is still not clear. In this study, we focused on the direct effects of G-CSF on donor CD4(+) T cell responses after transplantation. We observed that lethally irradiated B6D2F1 recipient mice that are transplanted with CD4(+) T cells from G-CSF-treated B6 donors showed mild attenuations in severity and mortality compared with recipients transplanted with PBS-treated CD4(+) T cells. Notably, skin GVHD was significantly reduced, but no such reduction was observed in other organs. Although there was no difference with respect to alloreactive expansion or Foxp3(+) Treg induction, the use of G-CSF-treated CD4(+) T cells significantly reduced the numbers of IL-17-producing and RORγt-expressing cells in the secondary lymphoid organs of allogeneic recipients after transplantation compared with the use of the control cells. Finally, we found that the suppressor of cytokine signaling-3 (SOCS3) expression in G-CSF-treated donor CD4(+) T cells was much higher than that in control CD4(+) T cells. Our results demonstrate that the inhibition of Th17 cell differentiation by SOCS3 induction is associated with the immunoregulatory role of G-CSF in CD4(+) T cell-mediated acute GVHD.  相似文献   

4.
Regulatory T cells (Tregs), in particular CD4(+) Foxp3(+) T cells, have been shown to play an important role in the maintenance of tolerance after allogeneic stem cell transplantation. In the current study, we have identified a population of CD8(+) Foxp3(+) T cells that are induced early during graft-versus-host disease (GVHD), constitute a significant percentage of the entire Treg population, and are present in all major GVHD target organs. These cells expressed many of the same cell surface molecules as found on CD4(+) Tregs and potently suppressed in vitro alloreactive T cell responses. Induction of these cells correlated positively with the degree of MHC disparity between donor and recipient and was significantly greater than that observed for CD4(+)-induced Tregs (iTregs) in nearly all tissue sites. Mice that lacked the ability to make both CD8(+) and CD4(+) iTregs had accelerated GVHD mortality compared with animals that were competent to make both iTreg populations. The absence of both iTreg populations was associated with significantly greater expansion of activated donor T cells and increased numbers of CD4(+) and CD8(+) T cells that secreted IFN-γ and IL-17. The presence of CD8(+) iTregs, however, was sufficient to prevent increased GVHD mortality in the complete absence of CD4(+) Tregs, indicating at least one functional iTreg population was sufficient to prevent an exacerbation in GVHD severity, and that CD8(+) iTregs could compensate for CD4(+) iTregs. These studies define a novel population of CD8(+) Tregs that play a role in mitigating the severity of GVHD after allogeneic stem cell transplantation.  相似文献   

5.
CD30, a TNFR family member, is expressed on activated CD4(+) and CD8(+) T cells and B cells and is a marker of Hodgkin's lymphoma; its ligand, CD30L (CD153) is expressed by activated CD4(+) and CD8(+) T cells, B cells, and macrophages. Signaling via CD30 can lead to proliferation or cell death. CD30-deficient (-/-) mice have impaired thymic negative selection and increased autoreactivity. Although human alloreactive T cells preferentially reside within the CD30(+) T cell subset, implicating CD30 as a regulator of T cell immune responses, the role of CD30/CD153 in regulating graft-vs-host disease (GVHD) has not been reported. We used a neutralizing anti-CD153 mAb, CD30(-/-) donor mice, and generated CD153(-/-) recipient mice to analyze the effect of CD30/CD153 interaction on GVHD induction. Our data indicate that the CD30/CD153 pathway is a potent regulator of CD4(+), but not CD8(+), T cell-mediated GVHD. Although blocking CD30/CD153 interactions in vivo did not affect alloreactive CD4(+) T cell proliferation or apoptosis, a substantial reduction in donor CD4(+) T cell migration into the gastrointestinal tract was readily observed with lesser effects in other GVHD target organs. Blockade of the CD30/CD153 pathway represents a new approach for preventing CD4(+) T cell-mediated GVHD.  相似文献   

6.
The complete repertoire of cellular and molecular determinants that influence graft-vs-host disease (GVHD) is not known. Using a well-established murine model of GVHD (B6-->bm12 mice), we sought to elucidate the role of the donor non-T cell compartment and molecular determinants therein in the pathogenesis of GVHD. In this model the acute GVHD-inducing effects of purified B6 wild-type (wt) CD4(+) T cells was inhibited by wt non-T cells in a dose-dependent manner. Paradoxically, unlike the chronic GVHD phenotype observed in bm12 mice transplanted with B6wt unfractionated splenocytes, bm12 recipients of B6ccr2-null unfractionated splenocytes developed acute GVHD and died of IFN-gamma-mediated bone marrow aplasia. This switch from chronic to acute GVHD was associated with increased target organ infiltration of activated CD4(+) T cells as well as enhanced expression of Th1/Th2 cytokines, chemokines, and the antiapoptotic factor bfl1. In vitro, ccr2(-/-) CD4(+) T cells in unfractionated splenocytes underwent significantly less activation-induced cell death than B6wt CD4(+) T cells, providing another potential mechanistic basis along with enhanced expression of bfl1 for the increased numbers of activated T cells in target organs of B6ccr2(-/-) splenocyte-->bm12 mice. Collectively, these findings have important clinical implications, as they implicate the donor non-T cell compartment as a critical regulator of GVHD and suggest that ccr2 expression in this cellular compartment may be an important molecular determinant of activation-induced cell death and GVHD pathogenesis.  相似文献   

7.
TNF-TNFR2 interactions promote MHC class II-stimulated alloresponses while TNF-TNFR1 interactions promote MHC class I-stimulated alloresponses. The present studies were designed to evaluate whether TNF-TNFR2 interactions were involved in the in vivo generation of CD4(+) T cell-mediated intestinal graft-versus-host disease (GVHD) in the (C57BL/6J (hereafter called B6) --> B6 x B6.C-H-2(bm12) (bm12))F(1) GVHD model. Briefly, 5 x 10(6) splenic CD4(+) T lymphocytes from B6.TNFR2(-/-) or control B6 mice were transferred with 1--2 x 10(6) T cell-depleted B6 bone marrow cells (BMC) to irradiated MHC class II-disparate (bm12 x B6)F(1) mice. Weight loss, intestinal inflammation, and the surface expression of CD45RB (memory marker) on intestinal and splenic lymphocytes were assessed. IL-2 and IFN-alpha mRNA levels in intestinal lymphocytes were assessed by nuclease protection assays. A significant reduction in weight loss and intestinal inflammation was observed in recipients of the TNFR2(-/-)CD4(+) SpC. Similarly, a significant decrease was noted in T cell numbers and in CD45RB(low) (activated/memory) expression on intestinal but not CD4(+) T cells in recipients of TNFR2(-/-)CD4(+) spleen cells. IL-2 and IFN-alpha mRNA levels were reduced in the intestine in the recipients of TNFR2(-/-) splenic CD4(+) T cells. These results indicate that TNF-TNFR2 interactions are important for the development of intestinal inflammation and activation/differentiation of Th1 cytokine responses by intestinal lymphocytes in MHC class II-disparate GVHD while playing an insignificant role in donor T cell activation in the spleen.  相似文献   

8.
Inhibition of graft-versus-host disease by double-negative regulatory T cells   总被引:12,自引:0,他引:12  
Pretransplant infusion of lymphocytes that express a single allogeneic MHC class I Ag has been shown to induce tolerance to skin and heart allografts that express the same alloantigens. In this study, we demonstrate that reconstitution of immunoincompetent mice with spleen cells from MHC class I L(d)-mismatched donors does not cause graft-vs-host disease (GVHD). Recipient mice become tolerant to skin allografts of lymphocyte donor origin while retaining immunity to third-party alloantigens. The mechanism involves donor-derived CD3(+)CD4(-)CD8(-) double-negative T regulatory (DN Treg) cells, which greatly increase and form the majority of T lymphocytes in the spleen of recipient mice. DN Treg cells isolated from tolerant recipient mice can suppress the proliferation of syngeneic antihost CD8(+) T cells in vitro. Furthermore, we demonstrate that DN Treg cells can be generated in vitro by stimulating them with MHC class I L(d)-mismatched lymphocytes. These in vitro generated L(d)-specific DN Treg cells are able to down-regulate the activity of antihost CD8(+) T cells in vitro by directly killing activated CD8(+) T cells. Moreover, infusing in vitro generated L(d)-mismatched DN Treg cells prevented the development of GVHD caused by allogeneic CD8(+) T cells. Together these data demonstrate that infusion of single MHC class I locus-mismatched lymphocytes may induce donor-specific transplantation tolerance through activation of DN Treg cells, which can suppress antihost CD8(+) T cells and prevent the development of GVHD. This finding indicates that using single class I locus-mismatched grafts may be a viable alternative to using fully matched grafts in bone marrow transplantation.  相似文献   

9.
The putative counterparts of human plasmacytoid pre-dendritic cells (pDCs) have been described in vivo in mouse models and very recently in an in vitro culture system. In this study, we report that large numbers of bone marrow-derived murine CD11c(+)B220(+) pDCs can be generated with Flt3 ligand (FL) as the sole exogenous differentiation/growth factor and that pDC generation is regulated in vivo by FL because FL-deficient mice showed a major reduction in splenic pDC numbers. We extensively analyzed bone marrow-derived CD11c(+)B220(+) pDCs and described their immature APC phenotype based on MHC class II, activation markers, and chemokine receptor level of expression. CD11c(+)B220(+) pDCs showed a nonoverlapping Toll-like receptor pattern of expression distinct from that of classical CD11c(+)B220(-) dendritic cells and were poor T cell stimulators. Stimulation of CD11c(+)B220(+) pDCs with oligodeoxynucleotides containing certain CpG motifs plus CD40 ligand plus GM-CSF led to increased MHC class II, CD80, CD86, and CD8alpha expression levels, to a switch in chemokine receptor expression that affected their migration, to IFN-alpha and IL-12 secretion, and to the acquisition of priming capacities for both CD4(+) and CD8(+) OVA-specific TCR-transgenic naive T cells. Thus, the in vitro generation of murine pDCs may serve as a useful tool to further investigate pDC biology as well as the potential role of these cells in viral immunity and other settings.  相似文献   

10.
DR6 is a recently identified member of the TNFR family. In a previous study, we have shown that DR6 KO mice have enhanced CD4(+) T cell proliferation and Th2 cytokine production. Acute graft-vs-host disease (GVHD) results from the activation and expansion of alloreactive donor T cells following bone marrow transplantation. In this article, we demonstrate that the transfer of donor T cells from DR6 KO mice into allogeneic recipient mice in a parent into an F(1) model of acute GVHD results in a more rapid onset of GVHD with increased severity. Recipients of DR6 KO T cells exhibit earlier systemic symptoms of GVHD, more rapid weight loss, earlier histopathological organ damage in the thymus, spleen, and intestines, and earlier mortality. The rapid onset of GVHD in these mice may be attributable to the enhanced activation and expansion of DR6 KO CD4(+) and CD8(+) T cells. Our findings support the hypothesis that DR6 serves as an important regulatory molecule in T cell immune responses. The identification and use of DR6 ligands and/or agonistic Abs to DR6 may represent useful therapeutics in the treatment of T cell-mediated diseases such as GVHD.  相似文献   

11.
Host APCs are required for initiating T cell-dependent acute graft-vs-host disease (GVHD), but the role of APCs in the effector phase of acute GVHD is not known. To measure the effect of tissue-resident APCs on the local development of acute GVHD, we selectively depleted host macrophages and DCs from the livers and spleens, but not from the skin, peripheral lymph nodes (PLN), or mesenteric lymph nodes (MLN), of C57BL/6 (B6) mice by i.v. administration of liposomal clodronate before allogeneic bone marrow transplantation. Depletion of host hepatic and splenic macrophages and DCs significantly inhibited the proliferation of donor C3H.SW CD8(+) T cells in the spleen, but not in the PLN or MLN, of B6 mice. Such organ-selective depletion of host tissue APCs also markedly reduced the trafficking of allogeneic CD8(+) T cells into the livers and spleens, but not PLN and MLN, of B6 recipients compared with that of the control mice. Acute hepatic, but not cutaneous, GVHD was inhibited as well, resulting in improved survival of liposomal clodronate-treated B6 recipients. When C3H.SW CD8(+) T cells were activated in normal B6 recipients, recovered, and adoptively transferred into secondary B6 recipients, activated donor CD8(+) T cells rapidly migrated into the livers and spleens of control B6 recipients but were markedly decreased in B6 mice that were depleted of hepatic and splenic macrophages and DCs. Thus, tissue-resident APCs control the local recruitment of allo-reactive donor T cells and the subsequent development of acute GVHD.  相似文献   

12.
To determine the mechanisms of graft-versus-tumor (GVT) activity in the absence of graft-versus-host disease (GVHD) against a solid tumor, we established two allogeneic bone marrow transplantation models with a murine renal cell carcinoma (RENCA). The addition of 0.3 x 10(6) donor CD8(+) T cells to the allograft increased the survival of tumor-bearing mice without causing GVHD. The analysis of CD8(+) T cells deficient in cytotoxic molecules demonstrated that anti-RENCA activity is dependent on IFN-gamma and Fas ligand (FasL), but does not require soluble or membrane-bound TNF-alpha, perforin, or TRAIL. Recipients of IFN-gamma(-/-) CD8(+) T cells are unable to reject RENCA compared with recipients of wild-type CD8(+) T cells and, importantly, neither group develops severe GVHD. IFN-gamma(-/-) CD8(+) T cells derived from transplanted mice are less able to kill RENCA cells in vitro, while pretreatment of RENCA cells with IFN-gamma enhances class I and FasL expression and rescues the lytic capacity of IFN-gamma(-/-) CD8(+) T cells. These results demonstrate that the addition of low numbers of selected donor CD8(+) T cells to the allograft can mediate GVT activity without lethal GVHD against murine renal cell carcinoma, and this GVT activity is dependent on IFN-gamma and FasL.  相似文献   

13.
To address whether a functional dichotomy exists between CD80 and CD86 in naive T cell activation in vivo, we administered anti-CD80 or CD86 blocking mAb alone or in combination to mice with parent-into-F(1) graft-vs-host disease (GVHD). In this model, the injection of naive parental T cells into unirradiated F(1) mice results in either a Th1 cytokine-driven, cell-mediated immune response (acute GVHD) or a Th2 cytokine-driven, Ab-mediated response (chronic GVHD) in the same F(1) recipient. Combined CD80/CD86 blockade beginning at the time of donor cell transfer mimicked previous results seen with CTLA4Ig and completely abrogated either acute or chronic GVHD by preventing the activation and maturation of donor CD4(+) T cells as measured by a block in acquisition of memory marker phenotype and cytokine production. Similar results were seen with selective CD86 blockade; however, the degree of CD4 inhibition was always less than that seen with combined CD80/CD86 blockade. A more striking effect was seen with selective CD80 blockade in that chronic GVHD was converted to acute GVHD. This effect was associated with the induction of Th1 cytokine production, donor CD8(+) T cell activation, and development of antihost CTL. The similarity of this effect to that reported for selective CTLA4 blockade suggests that CD80 is a critical ligand for CTLA4 in mediating the down-regulation of Th1 responses and CD8(+) T cell activation. In contrast, CD86 is critical for the activation of naive CD4(+) T cells in either a Th1 or a Th2 cytokine-mediated response.  相似文献   

14.
Mature donor T cells cause graft-versus-host disease (GVHD), but they are also the main mediators of the beneficial graft-versus-tumor (GVT) activity of allogeneic bone marrow transplantation. Suppression of GVHD with maintenance of GVT activity is a desirable outcome for clinical transplantation. We have previously shown that donor-derived CD4+CD25+ regulatory T cells inhibit lethal GVHD after allogeneic bone marrow transplantation across major histocompatibility complex (MHC) class I and II barriers in mice. Here we demonstrate that in host mice with leukemia and lymphoma, CD4+CD25+ regulatory T cells suppress the early expansion of alloreactive donor T cells, their interleukin-2-receptor (IL-2R) alpha-chain expression and their capacity to induce GVHD without abrogating their GVT effector function, mediated primarily by the perforin lysis pathway. Thus, CD4+CD25+ T cells are potent regulatory cells that can separate GVHD from GVT activity mediated by conventional donor T cells.  相似文献   

15.
16.
Plasmacytoid dendritic cells (pDCs) have both stimulatory and regulatory effects on T cells. pDCs are a major CNS-infiltrating dendritic cell population during experimental autoimmune encephalomyelitis but, unlike myeloid dendritic cells, have a minor role in T cell activation and epitope spreading. We show that depletion of pDCs during either the acute or relapse phases of experimental autoimmune encephalomyelitis resulted in exacerbation of disease severity. pDC depletion significantly enhanced CNS but not peripheral CD4(+) T cell activation, as well as IL-17 and IFN-gamma production. Moreover, CNS pDCs suppressed CNS myeloid dendritic cell-driven production of IL-17, IFN-gamma, and IL-10 in an IDO-independent manner. The data demonstrate that pDCs play a critical regulatory role in negatively regulating pathogenic CNS CD4(+) T cell responses, highlighting a new role for pDCs in inflammatory autoimmune disease.  相似文献   

17.
The myocarditic (H3) variant of Coxsackievirus B3 (CVB3) causes severe myocarditis in BALB/c mice and BALB/c mice lacking the invariant J alpha 281 gene, but minimal disease in BALB/c CD1d(-/-) animals. This indicates that CD1d expression is important in this disease but does not involve the invariant NKT cell often associated with CD1d-restricted immunity. The H3 variant of the virus increases CD1d expression in vitro in neonatal cardiac myocytes whereas a nonmyocarditic (H310A1) variant does not. V gamma 4(+) T cells show increased activation in both H3-infected BALB/c and J alpha 281(-/-) mice compared with CD1d(-/-) animals. The activated BALB/c V gamma 4(+) T cells from H3-infected mice kill H3-infected BALB/c myocytes and cytotoxicity is blocked with anti-CD1d but not with anti-MHC class I (K(d)/D(d)) or class II (IA/IE) mAbs. In contrast, H3 virus-infected CD1d(-/-) myocytes are not killed. These studies demonstrate that CD1d expression is essential for pathogenicity of CVB3-induced myocarditis, that CD1d expression is increased early after infection in vivo in CD1d(+) mice infected with the myocarditic but not with the nonmyocarditic CVB3 variant, and that V gamma 4(+) T cells, which are known to promote myocarditis susceptibility, appear to recognize CD1d expressed by CVB3-infected myocytes.  相似文献   

18.
Infusion of donor antiviral T cells can provide protective immunity for recipients of hemopoietic progenitor cell transplants, but may cause graft-vs-host disease (GVHD). Current methods of separating antiviral T cells from the alloreactive T cells that produce GVHD are neither routine nor rapid. In a model of lethal murine CMV (MCMV) infection following MHC-mismatched bone marrow transplantation, infusion of MCMV-immune donor lymphocytes pretreated with the DNA cross-linking compound amotosalen prevented MCMV lethality without producing GVHD. Although 95% of mice receiving 30 x 10(6) pretreated donor lymphocytes survived beyond day +100 without MCMV disease or GVHD, all mice receiving equivalent numbers of untreated lymphocytes rapidly died of GVHD. In vitro, amotosalen blocked T cell proliferation without suppressing MCMV peptide-induced IFN-gamma production by MCMV-primed CD8(+) T cells. In vivo, pretreated lymphocytes reduced hepatic MCMV load by 4-log(10) and promoted full hemopoietic chimerism. Amotosalen-treated, MCMV tetramer-positive memory (CD44(high)) CD8(+) T cells persisted to day +100 following infusion, and expressed IFN-gamma when presented with viral peptide. Pretreated T cells were effective at preventing MCMV lethality over a wide range of concentrations. Thus, amotosalen treatment rapidly eliminates the GVHD activity of polyclonal T cells, while preserving long-term antiviral and graft facilitation effects, and may be clinically useful for routine adoptive immunotherapy.  相似文献   

19.
T cells play an essential role in driving humoral autoimmunity in lupus. Molecules such as TRAIL exhibit strong T cell modulatory effects and are up-regulated in lupus, raising the possibility that they may influence disease severity. To address this possibility, we examined the role of TRAIL expression on pathogenic T cells in an induced model of murine lupus, the parent-into-F(1) (P-->F(1)) model of chronic graft-vs-host disease (GVHD), using wild-type or TRAIL-deficient donor T cells. Results were compared with mice undergoing suppressive acute GVHD. Although chronic GVHD mice exhibited less donor T cell TRAIL up-regulation and IFN-alpha-inducible gene expression than acute GVHD mice, donor CD4(+) T cell TRAIL expression in chronic GVHD was essential for sustaining effector CD4(+) Th cell numbers, for sustaining help to B cells, and for more severe lupus-like renal disease development. Conversely, TRAIL expression on donor CD8(+) T cells had a milder, but significant down-regulatory effect on CTL effector function, affecting the perforin/granzyme pathway and not the Fas ligand pathway. These results indicate that, in this model, T cell-expressed TRAIL exacerbates lupus by the following: 1) positively regulating CD4(+) Th cell numbers, thereby sustaining T cell help for B cells, and 2) to a lesser degree by negatively regulating perforin-mediated CD8(+) CTL killing that could potentially eliminate activated autoreactive B cells.  相似文献   

20.
Acute and chronic graft-versus-host disease (GVHD) remain the major complications limiting the efficacy of allogeneic hemopoietic stem cell transplantation. Chronic GVHD can evolve from acute GVHD, or in some cases may overlap with acute GVHD, but how acute GVHD evolves to chronic GVHD is unknown. In this study, in a classical CD8+ T cell-dependent mouse model, we found that pathogenic donor CD4+ T cells developed from engrafted hemopoietic stem cells (HSCs) in C57BL/6SJL(B6/SJL, H-2(b)) mice suffering from acute GVHD after receiving donor CD8+ T cells and HSCs from C3H.SW mice (H-2(b)). These CD4+ T cells were activated, infiltrated into GVHD target tissues, and produced high levels of IFN-gamma. These in vivo-generated CD4+ T cells caused lesions characteristic of chronic GVHD when adoptively transferred into secondary allogeneic recipients and also caused GVHD when administered into autologous C3H.SW recipients. The in vivo generation of pathogenic CD4+ T cells from engrafted donor HSCs was thymopoiesis dependent. Keratinocyte growth factor treatment improved the reconstitution of recipient thymic dendritic cells in CD8+ T cell-repleted allogeneic hemopoietic stem cell transplantation and prevented the development of pathogenic donor CD4+ T cells. These results suggest that de novo-generated donor CD4+ T cells, arising during acute graft-versus-host reactions, are key contributors to the evolution from acute to chronic GVHD. Preventing or limiting thymic damage may directly ameliorate chronic GVHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号