首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.  相似文献   

2.
Adeno-associated virus capsids are composed of three proteins, VP1, VP2, and VP3. Although VP1 is necessary for viral infection, it is not essential for capsid formation. The other capsid proteins, VP2 and VP3, are sufficient for capsid formation, but the functional roles of each protein are still not well understood. By analyzing a series of deletion mutants of VP2, we identified a region necessary for nuclear transfer of VP2 and found that the efficiency of nuclear localization of the capsid proteins and the efficiency of virus-like particle (VLP) formation correlated well. To confirm the importance of the nuclear localization of the capsid proteins, we fused the nuclear localization signal of simian virus 40 large T antigen to VP3 protein. We show that this fusion protein could form VLP, indicating that the VP2-specific region located on the N-terminal side of the protein is not structurally required. This finding suggests that VP3 has sufficient information for VLP formation and that VP2 is necessary only for nuclear transfer of the capsid proteins.  相似文献   

3.
The vesivirus feline calicivirus (FCV) is a positive strand RNA virus encapsidated by an icosahedral T=3 shell formed by the viral VP1 protein. Upon its expression in the insect cell - baculovirus system in the context of vaccine development, two types of virus-like particles (VLPs) were formed, a majority built of 60 subunits (T=1) and a minority probably built of 180 subunits (T=3). The structure of the small particles was determined by x-ray crystallography at 0.8 nm resolution helped by cryo-electron microscopy in order to understand their formation. Cubic crystals belonged to space group P213. Their self-rotation function showed the presence of an octahedral pseudo-symmetry similar to the one described previously by Agerbandje and co-workers for human parvovirus VLPs. The crystal structure could be solved starting from the published VP1 structure in the context of the T=3 viral capsid. In contrast to viral capsids, where the capsomers are interlocked by the exchange of the N-terminal arm (NTA) domain, this domain is disordered in the T=1 capsid of the VLPs. Furthermore it is prone to proteolytic cleavage. The relative orientation of P (protrusion) and S (shell) domains is alerted so as to fit VP1 to the smaller T=1 particle whereas the intermolecular contacts around 2-fold, 3-fold and 5-fold axes are conserved. By consequence the surface of the VLP is very similar compared to the viral capsid and suggests a similar antigenicity. The knowledge of the structure of the VLPs will help to improve their stability, in respect to a use for vaccination.  相似文献   

4.
Sesbania mosaic virus (SeMV) capsids are stabilized by RNA-protein, protein-protein and calcium-mediated protein-protein interactions. The removal of calcium has been proposed to be a prerequisite for the disassembly of the virus. The crystal structure of native T=3 SeMV capsid revealed that residues D146 and D149 from one subunit and Y205, N267 and N268 of the neighboring subunit form the calcium-binding site (CBS). The CBS environment is found to be identical even in the recombinant CP-NDelta65 T=1 capsids. Here, we have addressed the role of calcium and the residues involved in calcium co-ordination in the assembly and stability of T=3 and T=1 capsids by mutational analysis. Deletion of N267 and N268 did not affect T=3 or T=1 assembly, although the capsids were devoid of calcium, suggesting that assembly does not require calcium ions. However, the stability of the capsids was reduced drastically. Site-directed mutagenesis revealed that either a single mutation (D149N) or a double mutation (D146N-D149N) of SeMV coat protein affected drastically both the assembly and stability of T=3 capsids. On the other hand, the D146N-D149N mutation in CP-NDelta65 did not affect the assembly of T=1 capsid, although their stability was reduced considerably. Since the major difference between the T=3 and T=1 capsids is the absence of the N-terminal arginine-rich motif (N-ARM) and the beta-annulus from the subunits forming the T=1 capsids, it is possible that D149 initiates the N-ARM-RNA interactions that lead to the formation of the beta-annulus, which is essential for T=3 capsid assembly.  相似文献   

5.
The aim of this study was to produce gene transfer vectors consisting of plasmid DNA packaged into virus-like particles (VLPs) with different cell tropisms. For this purpose, we have fused the N-terminally truncated VP60 capsid protein of the rabbit hemorrhagic disease virus (RHDV) with sequences which are expected to be sufficient to confer DNA packaging and gene transfer properties to the chimeric VLPs. Each of the two putative DNA-binding sequences of major L1 and minor L2 capsid proteins of human papillomavirus type 16 (HPV-16) were fused at the N terminus of the truncated VP60 protein. The two recombinant chimeric proteins expressed in insect cells self-assembled into VLPs similar in size and appearance to authentic RHDV virions. The chimeric proteins had acquired the ability to bind DNA. The two chimeric VLPs were therefore able to package plasmid DNA. However, only the chimeric VLPs containing the DNA packaging signal of the L1 protein were able efficiently to transfer genes into Cos-7 cells at a rate similar to that observed with papillomavirus L1 VLPs. It was possible to transfect only a very limited number of RK13 rabbit cells with the chimeric RHDV capsids containing the L2-binding sequence. The chimeric RHDV capsids containing the L1-binding sequence transfer genes into rabbit and hare cells at a higher rate than do HPV-16 L1 VLPs. However, no gene transfer was observed in human cell lines. The findings of this study demonstrate that the insertion of a DNA packaging sequence into a VLP which is not able to encapsidate DNA transforms this capsid into an artificial virus that could be used as a gene transfer vector. This possibility opens the way to designing new vectors with different cell tropisms by inserting such DNA packaging sequences into the major capsid proteins of other viruses.  相似文献   

6.
Structural protein complexes sedimenting at 140S, 70S (empty capsids), and 14S were isolated from foot-and-mouth disease virus-infected cells. The empty capsids were stable, while 14S complexes were relatively short-lived. Radioimmune binding assays involving the use of neutralizing monoclonal antibodies to six distinct epitopes on type A12 virus and polyclonal antisera to A12 structural proteins demonstrated that native empty capsids were indistinguishable from virus. Infected cell 14S particles possessed all the neutralizing epitopes and reacted with VP2 antiserum. Cell-free structural protein complexes sedimenting at 110S, 60S, and 14S containing capsid proteins VP0, VP3, and VP1 are assembled in a rabbit reticulocyte lysate programmed with foot-and-mouth viral RNA. These structures also contain the six epitopes, and cell-free 14S structures like their in vivo counterparts reacted with VP2 antiserum. Capsid structures from infected cells and the cell-free complexes adsorbed to susceptible cells, and this binding was inhibited, to various degrees, by saturating levels of unlabeled virus. These assays and other biochemical evidence indicate that capsid assembly in the cell-free system resembles viral morphogenesis in infected cells. In addition, epitopes on the virus surface possibly involved in interaction with cellular receptor sites are found early in virion morphogenesis.  相似文献   

7.
Virus‐like particles have proved to be excellent molecular scaffolds, yet the individual characteristics and immune responses generated against each VLP requires the development of a wide range of capsids for use as vaccines, molecular delivery vessels, and nanoscale templates. Here we describe the development of Rabbit haemorrhagic disease virus (RHDV)‐like particles as a rapidly versatile molecular workbench, overcoming limitations imposed by established genetic antigen incorporation procedures with chimeric VLP. Production of the RHDV capsid protein in a baculovirus system led to the self‐assembly of VLP which were recovered at over 99% purity and manipulated both genetically and chemically. Fusion of small peptide sequences to RHDV VLP was well tolerated, forming chimeric capsids that enhanced the presentation of foreign peptide to hybridoma T helper cells 700‐fold. Rapid and simple conjugation techniques employing the hetero‐bifunctional chemical linker sulfo‐SMCC enabled both small peptides and whole proteins to be conjugated to the surface of RHDV VLP, overcoming limitations imposed on VLP formation and yield experienced with chimeric VLP. Administration of VLP/ovalbumin conjugate provoked high titre ovalbumin‐specific antibody in mice, demonstrating the immune stimulatory properties of the capsid were conferred to conjugated foreign antigen. VLP facilitated delivery of conjugated antigen to dendritic cells, eliciting proliferative responses in naïve TCR transgenic T helper cells that were at least 10‐fold greater than ovalbumin antigen delivered alone. Biotechnol. Bioeng. 2007;98: 968–977. © 2007 Wiley Periodicals, Inc.  相似文献   

8.
Virions of polyomaviruses consist of the major structural protein VP1, the minor structural proteins VP2 and VP3, and the viral genome associated with histones. An additional structural protein, VP4, is present in avian polyomavirus (APV) particles. As it had been reported that expression of APV VP1 in insect cells did not result in the formation of virus-like particles (VLP), the prerequisites for particle formation were analyzed. To this end, recombinant influenza viruses were created to (co)express the structural proteins of APV in chicken embryo cells, permissive for APV replication. VP1 expressed individually or coexpressed with VP4 did not result in VLP formation; both proteins (co)localized in the cytoplasm. Transport of VP1, or the VP1-VP4 complex, into the nucleus was facilitated by the coexpression of VP3 and resulted in the formation of VLP. Accordingly, a mutant APV VP1 carrying the N-terminal nuclear localization signal of simian virus 40 VP1 was transported to the nucleus and assembled into VLP. These results support a model of APV capsid assembly in which complexes of the structural proteins VP1, VP3 (or VP2), and VP4, formed within the cytoplasm, are transported to the nucleus using the nuclear localization signal of VP3 (or VP2); there, capsid formation is induced by the nuclear environment.  相似文献   

9.
Minute virus of mice (MVM) enters the host cell via receptor-mediated endocytosis. Although endosomal processing is required, its role remains uncertain. In particular, the effect of low endosomal pH on capsid configuration and nuclear delivery of the viral genome is unclear. We have followed the progression and structural transitions of DNA full-virus capsids (FC) and empty capsids (EC) containing the VP1 and VP2 structural proteins and of VP2-only virus-like particles (VLP) during the endosomal trafficking. Three capsid rearrangements were detected in FC: externalization of the VP1 N-terminal sequence (N-VP1), cleavage of the exposed VP2 N-terminal sequence (N-VP2), and uncoating of the full-length genome. All three capsid modifications occurred simultaneously, starting as early as 30 min after internalization, and all of them were blocked by raising the endosomal pH. In particles lacking viral single-stranded DNA (EC and VLP), the N-VP2 was not exposed and thus it was not cleaved. However, the EC did externalize N-VP1 with kinetics similar to those of FC. The bulk of all the incoming particles (FC, EC, and VLP) accumulated in lysosomes without signs of lysosomal membrane destabilization. Inside lysosomes, capsid degradation was not detected, although the uncoated DNA of FC was slowly degraded. Interestingly, at any time postinfection, the amount of structural proteins of the incoming virions accumulating in the nuclear fraction was negligible. These results indicate that during the early endosomal trafficking, the MVM particles are structurally modified by low-pH-dependent mechanisms. Regardless of the structural transitions and protein composition, the majority of the entering viral particles and genomes end in lysosomes, limiting the efficiency of MVM nuclear translocation.  相似文献   

10.
Cell-free assembly of the herpes simplex virus capsid.   总被引:18,自引:18,他引:0       下载免费PDF全文
Herpes simplex virus type 1 (HSV-1) capsids were found to assemble spontaneously in a cell-free system consisting of extracts prepared from insect cells that had been infected with recombinant baculoviruses coding for HSV-1 capsid proteins. The capsids formed in this system resembled native HSV-1 capsids in morphology as judged by electron microscopy, in sedimentation rate on sucrose density gradients, in protein composition, and in their ability to react with antibodies specific for the HSV-1 major capsid protein, VP5. Optimal capsid assembly required the presence of extracts containing capsid proteins VP5, VP19, VP23, VP22a, and the maturational protease (product of the UL26 gene). Assembly was more efficient at 27 degrees C than at 4 degrees C. The availability of a cell-free assay for HSV-1 capsid formation will be of help in identifying the morphogenetic steps that occur during capsid assembly in vivo and in evaluating candidate antiherpes therapeutics directed at capsid assembly.  相似文献   

11.
Typical herpes simplex virus (HSV) capsids contain seven proteins that form a T=16 icosahedron of 1,250-A diameter. Infection of cells with recombinant baculoviruses expressing two of these proteins, VP5 (which forms the pentons and hexons in typical HSV capsids) and VP19C (a component of the triplexes that connect adjacent capsomeres), results in the formation of spherical particles of 880-A diameter. Electron cryomicroscopy and computer reconstruction revealed that these particles possess a T=7 icosahedral symmetry, having 12 pentons and 60 hexons. Among the characteristic structural features of the particle are the skewed appearance of the hexons and the presence of intercapsomeric mass densities connecting the middle domain of one hexon subunit to the lower domain of a subunit in the adjacent hexon. We interpret these connecting masses as being formed by VP19C. Comparison of the connecting masses with the triplexes, which occupy equivalent positions in the T=16 capsid, reveals the probable locations of the single VP19C and two VP23 molecules that make up the triplex. Their arrangement suggests that the two triplex proteins have different roles in controlling intercapsomeric interactions and capsid stability. The nature of these particles and of other aberrant forms made in the absence of scaffold demonstrates the conformational adaptability of the capsid proteins and illustrates how VP23 and the scaffolding protein modulate the nature of the VP5-VP19C network to ensure assembly of the functional T=16 capsid.  相似文献   

12.
Capsid functions of inactivated human picornaviruses and feline calicivirus   总被引:1,自引:0,他引:1  
The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72 degrees C), and physiological temperature (37 degrees C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37 degrees C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72 degrees C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37 degrees C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72 degrees C inactivation is the capsid and that the target of thermal inactivation (37 degrees C versus 72 degrees C) is temperature dependent.  相似文献   

13.
Infectious bursal disease virus (IBDV) is a nonenveloped virus with an icosahedral capsid composed of two proteins, VP2 and VP3, that derive from the processing of the polyprotein NH(2)-pVP2-VP4-VP3-COOH. The virion contains VP1, the viral polymerase, which is both free and covalently linked to the two double-stranded RNA (dsRNA) genomic segments. In this study, the virus assembly process was studied further with the baculovirus expression system. While expression of the wild-type polyprotein was not found to be self-sufficient to give rise to virus-like particles (VLPs), deletion or replacement of the five C-terminal residues of VP3 was observed to promote capsid assembly. Indeed, the single deletion of the C-terminal glutamic acid was sufficient to induce VLP formation. Moreover, fusion of various peptides or small proteins (a green fluorescent protein or a truncated form of ovalbumin) at the C terminus of VP3 also promoted capsid assembly, suggesting that assembly required screening of the negative charges at the C terminus of VP3. The fused polypeptides mimicked the effect of VP1, which interacts with VP3 to promote VLP assembly. The C-terminal segment of VP3 was found to contain two functional domains. While the very last five residues of VP3 mainly controlled both assembly and capsid architecture, the five preceding residues constituted the VP1 (and possibly the pVP2/VP2) binding domain. Finally, we showed that capsid formation is associated with VP2 maturation, demonstrating that the protease VP4 is involved in the virus assembly process.  相似文献   

14.
The capsid protein of feline calicivirus (FCV) was expressed by using plasmids containing cytomegalovirus, simian virus 40, or T7 promoters. The strongest expression was achieved with the T7 promoter and coinfection with vaccinia virus expressing the T7 RNA polymerase (MVA/T7pol). The FCV precursor capsid protein was processed to the mature-size protein, and these proteins were assembled in to virus-like particles.  相似文献   

15.
Herpes simplex virus type 1 (HSV-1) intermediate capsids are composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, and the genes that encode these proteins, UL19, UL38, UL26, UL26.5, UL18, UL26, and UL35, respectively. The UL26 gene encodes a protease that cleaves itself and the product of the UL26.5 gene at a site (M site) 25 amino acids from the C terminus of these two proteins. In addition, the protease cleaves itself at a second site (R site) between amino acids 247 and 248. Cleavage of the UL26 protein gives rise to the capsid proteins VP21 and VP24, and cleavage of the UL26.5 protein gives rise to the capsid protein VP22a. Previously we described the production of HSV-1 capsids in insect cells by infecting the cells with recombinant baculoviruses expressing the six capsid genes (D. R. Thomsen, L. L. Roof, and F. L. Homa, J. Virol. 68:2442-2457, 1994). Using this system, we demonstrated that the products of the UL26 and/or UL26.5 genes are required as scaffolds for assembly of HSV-1 capsids. To better understand the functions of the UL26 and UL26.5 proteins in capsid assembly, we constructed baculoviruses that expressed altered UL26 and UL26.5 proteins. The ability of the altered UL26 and UL26.5 proteins to support HSV-1 capsid assembly was then tested in insect cells. Among the specific mutations tested were (i) deletion of the C-terminal 25 amino acids from the proteins coded for by the UL26 and UL26.5 genes; (ii) mutation of His-61 of the UL26 protein, an amino acid required for protease activity; and (iii) mutation of the R cleavage site of the UL26 protein. Analysis of the capsids formed with wild-type and mutant proteins supports the following conclusions: (i) the C-terminal 25 amino acids of the UL26 and UL26.5 proteins are required for capsid assembly; (ii) the protease activity associated with the UL26 protein is not required for assembly of morphologically normal capsids; and (iii) the uncleaved forms of the UL26 and UL26.5 proteins are employed in assembly of 125-nm-diameter capsids; cleavage of these proteins occurs during or subsequent to capsid assembly. Finally, we carried out in vitro experiments in which the major capsid protein VP5 was mixed with wild-type or truncated UL26.5 protein and then precipitated with a VP5-specific monoclonal antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72°C), and physiological temperature (37°C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37°C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72°C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37°C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72°C inactivation is the capsid and that the target of thermal inactivation (37°C versus 72°C) is temperature dependent.  相似文献   

17.
D R Thomsen  L L Roof    F L Homa 《Journal of virology》1994,68(4):2442-2457
The capsid of herpes simplex virus type 1 (HSV-1) is composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, which are the products of six HSV-1 genes. Recombinant baculoviruses were used to express the six capsid genes (UL18, UL19, UL26, UL26.5, UL35, and UL38) in insect cells. All constructs expressed the appropriate-size HSV proteins, and insect cells infected with a mixture of the six recombinant baculoviruses contained large numbers of HSV-like capsids. Capsids were purified by sucrose gradient centrifugation, and electron microscopy showed that the capsids made in Sf9 cells had the same size and appearance as authentic HSV B capsids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the protein composition of these capsids was nearly identical to that of B capsids isolated from HSV-infected Vero cells. Electron microscopy of thin sections clearly demonstrated that the capsids made in insect cells contained the inner electron-translucent core associated with HSV B capsids. In infections in which single capsid genes were left out, it was found that the UL18 (VP23), UL19 (VP5), UL38 (VP19C), and either the UL26 (VP21 and VP24) or the UL26.5 (VP22a) genes were required for assembly of 100-nm capsids. VP22a was shown to form the inner core of the B capsid, since in infections in which the UL26.5 gene was omitted the 100-nm capsids that formed lacked the inner core. The UL35 (VP26) gene was not required for assembly of 100-nm capsids, although assembly of B capsids was more efficient when it was present. These and other observations indicate that (i) the products of the UL18, UL19, UL35, and UL38 genes self-assemble into structures that form the outer surface (icosahedral shell) of the capsid, (ii) the products of the UL26 and/or UL26.5 genes are required (as scaffolds) for assembly of 100-nm capsids, and (iii) the interaction of the outer surface of the capsid with the scaffolding proteins requires the product of the UL18 gene (VP23).  相似文献   

18.
Adeno-associated virus type 2 (AAV2) capsid assembly requires the expression of a virally encoded assembly-activating protein (AAP). By providing AAP together with the capsid protein VP3, capsids are formed that are composed of VP3 only. Electron cryomicroscopy analysis of assembled VP3-only capsids revealed all characteristics of the wild-type AAV2 capsids. However, in contrast to capsids assembled from VP1, VP2, and VP3, the pores of VP3-only capsids were more restricted at the inside of the 5-fold symmetry axes, and globules could not be detected below the 2-fold symmetry axes. By comparing the capsid assembly of several AAV serotypes with AAP protein from AAV2 (AAP-2), we show that AAP-2 is able to efficiently stimulate capsid formation of VP3 derived from several serotypes, as demonstrated for AAV1, AAV2, AAV8, and AAV9. Capsid formation, by coexpressing AAV1-, AAV2-, or AAV5-VP3 with AAP-1, AAP-2, or AAP-5 revealed the ability of AAP-1 and AAP-2 to complement each other in AAV1 and AAV2 assembly, whereas for AAV5 assembly more specific conditions are required. Sequence alignment of predicted AAP proteins from the known AAV serotypes indicates a high degree of homology of all serotypes to AAP-2 with some divergence for AAP-4, AAP-5, AAP-11, and AAP-12. Immunolocalization of assembled capsids from different serotypes confirmed the preferred nucleolar localization of capsids, as observed for AAV2; however, AAV8 and AAV9 capsids could also be detected throughout the nucleus. Taken together, the data show that AAV capsid assembly of different AAV serotypes also requires the assistance of AAP proteins.  相似文献   

19.
The herpes simplex virus type 1 capsid is a protective shell that acts as a container for the genetic material of the virus. After assembly of the capsid, the viral DNA is translocated into the capsid interior through a channel formed by the portal. The portal is composed of a dodecamer of UL6 molecules which form a ring-like structure found at a single vertex within the icosahedron. Formation of portal-containing capsids minimally requires the four structural proteins (VP5, VP19C, VP23, and UL6) and a scaffolding protein (UL26.5). Recently, an interaction between UL26.5 and the portal has been identified, suggesting the scaffold functions by delivering the portal to the growing capsid shell. The aim of this study was to identify regions within UL26.5 required for its interaction with the portal. A specific region was identified by mutational analysis. Deletion of scaffold amino acids (aa) 143 to 151 was found to be sufficient to inhibit formation of the scaffold-portal complex as assayed in vitro. The aa 143 to 151 contain the sequence YYPGE, which is highly conserved among alpha herpesviruses. Although it did not bind to the portal, the Delta143-151 mutant was found to retain the ability to support assembly of morphologically normal capsids in vitro. Such capsids, however, did not contain the portal. The results suggest assembly of portal-containing capsids requires formation of a scaffold-portal complex in which intermolecular contact is dependent on scaffold aa 143 to 151.  相似文献   

20.
Partially cored herpes simplex virus type 1 (HSV-1) capsids (B capsids) were eroded in a low-energy (0.5-keV) Ar+ ion plasma under conditions in which the outermost structural proteins were expected to be degraded before more internal ones. After various periods of etching, the proteins remaining intact were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determined quantitatively by densitometric scanning of the stained gels. The results showed that the major capsid polypeptide (VP5) and two other capsid proteins, VP19 and VP23, were degraded rapidly beginning as soon as capsids were exposed to the ion plasma. In contrast, significant lags were observed for erosion of VP21, VP22a, and VP24, suggesting that these proteins were available to accelerated ions only after other, more external structures had been damaged or eroded away. The results suggest that VP5, VP19, and VP23 are exposed on the surface of the capsid, while VP21, VP22a, and VP24 are found inside the capsid cavity. The experiments are consistent with the view that VP5 constitutes the major structural component of the hexavalent capsomers. It is proposed that VP19 and VP23 may form other surface structures such as the pentavalent capsomers, the capsid floor, or the intercapsomeric fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号