共查询到20条相似文献,搜索用时 15 毫秒
1.
Background
Twist1a and twist1b are the principal components of twists that negatively regulate a number of cellular signaling events. Expression of runx2 and downstream targets is essential for skeletal development and ventral organizer formation and specification in early vertebrate embryos, but what controls ventral activity of maternal runx2 and how twists function in zebrafish embryogenesis still remain unclear.Methodology/Principal Findings
By studying the loss of twist induced by injection of morpholino-oligonucleotide in zebrafish, we found that twist1a and twist1b, but not twist2 or twist3, were required for proper skeletal development and dorsoventral patterning in early embryos. Overexpression of twist1a or twist1b following mRNA injection resulted in deteriorated skeletal development and formation of typical dorsalized embryos, whereas knockdown of twist1a and twist1b led to the formation of abnormal embryos with enhanced skeletal formation and typical ventralized patterning. Overexpression of twist1a or twist1b decreased the expression of runx2b, whereas twist1a and twist1b knockdown increased runx2b expression. We have further demonstrated that phenotypes induced by twist1a and twist1b knockdown were rescued by runx2b knockdown.Conclusions/Significance
Together, these results suggest that twist1a and twist1b control skeletal development and dorsoventral patterning by regulating runx2b in zebrafish and provide potential targets for the treatment of diseases or syndromes associated with decreased skeletal development. 相似文献2.
P. Fernández-Nohales M. J. Domenech A. E. Martínez de Alba J. L. Micol M. R. Ponce F. Madue?o 《Annals of botany》2014,114(7):1471-1481
Background and Aims
The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants have extended vegetative and inflorescence phases, producing many coflorescences. TFL1 is expressed in the shoot meristems, never in the flowers. In the inflorescence apex, TFL1 keeps the floral genes LEAFY (LFY) and APETALA1 (AP1) restricted to the flower, while LFY and AP1 restrict TFL1 to the inflorescence meristem. In spite of the central role of TFL1 in inflorescence architecture, regulation of its expression is poorly understood. This study aims to expand the understanding of inflorescence development by identifying and studying novel TFL1 regulators.Methods
Mutagenesis of an Arabidopsis thaliana line carrying a TFL1::GUS (β-glucuronidase) reporter construct was used to isolate a mutant with altered TFL1 expression. The mutated gene was identified by positional cloning. Expression of TFL1 and TFL1::GUS was analysed by real-time PCR and histochemical GUS detection. Double-mutant analysis was used to assess the contribution of TFL1 to the inflorescence mutant phenotype.Key Results
A mutant with both an increased number of coflorescences and high and ectopic TFL1 expression was isolated. Cloning of the mutated gene showed that both phenotypes were caused by a mutation in the ARGONAUTE1 (AGO1) gene, which encodes a key component of the RNA silencing machinery. Analysis of another ago1 allele indicated that the proliferation of coflorescences and ectopic TFL1 expression phenotypes are not allele specific. The increased number of coflorescences is suppressed in ago1 tfl1 double mutants.Conclusions
The results identify AGO1 as a repressor of TFL1 expression. Moreover, they reveal a novel role for AGO1 in inflorescence development, controlling the production of coflorescences. AGO1 seems to play this role through regulating TFL1 expression. 相似文献3.
Takamoto N You LR Moses K Chiang C Zimmer WE Schwartz RJ DeMayo FJ Tsai MJ Tsai SY 《Development (Cambridge, England)》2005,132(9):2179-2189
COUP-TFII, an orphan member of the steroid receptor superfamily, has been implicated in mesenchymal-epithelial interaction during organogenesis. The generation of a lacZ knock-in allele in the COUP-TFII locus in mice allows us to use X-gal staining to follow the expression of COUP-TFII in the developing stomach. We found COUP-TFII is expressed in the mesenchyme and the epithelium of the developing stomach. Conditional ablation of floxed COUP-TFII by Nkx3-2Cre recombinase in the gastric mesenchyme results in dysmorphogenesis of the developing stomach manifested by major patterning defects in posteriorization and radial patterning. The epithelial outgrowth, the expansion of the circular smooth muscle layer and enteric neurons as well as the posteriorization of the stomach resemble phenotypes exhibited by inhibition of hedgehog signaling pathways. Using organ cultures and cyclopamine treatment, we showed downregulation of COUP-TFII level in the stomach, suggesting COUP-TFII as a target of hedgehog signaling in the stomach. Our results are consistent with a functional link between hedgehog proteins and COUP-TFII, factors that are vital for epithelial-mesenchymal interactions. 相似文献
4.
5.
6.
PDGF signalling controls the migration of mesoderm cells during chick gastrulation by regulating N-cadherin expression 总被引:1,自引:0,他引:1
In the early chick embryo, Pdgfa is expressed in the epiblast, outlining the migration route that mesoderm cells expressing the receptor, Pdgfralpha, follow to form somites. Both expression of a dominant-negative PDGFRalpha and depletion of endogenous PDGFRalpha ligands through injection of PDGFRalpha-Fc fragments, inhibit the migration of mesoderm cells after their ingression through the primitive streak. siRNA-mediated downregulation of Pdgfa expression in the epiblast on one side of the streak strongly blocks the migration of mesoderm cells into that side. Beads soaked in PDGFA elicit a directional attractive movement response in mesoderm cells, showing that PDGFA can provide directional information. Surprisingly, however, PDGF signalling is also required for directional movement towards other attractants, such as FGF4. PDGF signalling controls N-cadherin expression on mesoderm cells, which is required for efficient migration. PDGF signalling activates the PI3 kinase signalling pathway in vivo and activation of this pathway is required for proper N-cadherin expression. 相似文献
7.
8.
Notch signaling controls fundamental aspects of angiogenic blood vessel growth including the selection of sprouting tip cells, endothelial proliferation and arterial differentiation. The E3 ubiquitin ligase Fbxw7 is part of the SCF protein complex responsible for the polyubiquitination and thereby proteasomal degradation of substrates such as Notch, c-Myc and c-Jun. Here, we show that Fbxw7 is a critical regulator of angiogenesis in the mouse retina and the zebrafish embryonic trunk, which we attribute to its role in the degradation of active Notch. Growth of retinal blood vessel was impaired and the Notch ligand Dll4, which is also a Notch target, upregulated in inducible and endothelial cell-specific Fbxw7(iECKO) mutant mice. The stability of the cleaved and active Notch intracellular domain was increased after siRNA knockdown of the E3 ligase in cultured human endothelial cells. Injection of fbxw7 morpholinos interfered with the sprouting of zebrafish intersegmental vessels (ISVs). Arguing strongly that Notch and not other Fbxw7 substrates are primarily responsible for these phenotypes, the genetic inactivation of Notch pathway components reversed the impaired ISV growth in the zebrafish embryo as well as sprouting and proliferation in the mouse retina. Our findings establish that Fbxw7 is a potent positive regulator of angiogenesis that limits the activity of Notch in the endothelium of the growing vasculature. 相似文献
9.
Sánchez-Alcañiz JA Haege S Mueller W Pla R Mackay F Schulz S López-Bendito G Stumm R Marín O 《Neuron》2011,69(1):77-90
The chemokine Cxcl12 binds Cxcr4 and Cxcr7 receptors to control cell migration in multiple biological contexts, including brain development, leukocyte trafficking, and tumorigenesis. Both receptors are expressed in the CNS, but how they cooperate during migration has not been elucidated. Here, we used the migration of cortical interneurons as a model to study this process. We found that Cxcr4 and Cxcr7 are coexpressed in migrating interneurons, and that Cxcr7 is essential for chemokine signaling. Intriguingly, this process does not exclusively involve Cxcr7, but most critically the modulation of Cxcr4 function. Thus, Cxcr7 is necessary to regulate Cxcr4 protein levels, thereby adapting chemokine responsiveness in migrating cells. This demonstrates that a chemokine receptor modulates the function of another chemokine receptor by controlling the amount of protein that is made available for signaling at the cell surface. 相似文献
10.
11.
12.
Correct cellular patterning is central to tissue morphogenesis, but the role of epithelial junctions in this process is not well-understood. The Drosophila pupal eye provides a sensitive and accessible model for testing the role of junction-associated proteins in cells that undergo dynamic and coordinated movements during development. Mutations in polychaetoid (pyd), the Drosophila homologue of Zonula Occludens-1, are characterized by two phenotypes visible in the adult fly: increased sensory bristle number and the formation of a rough eye produced by poorly arranged ommatidia. We found that Pyd was localized to the adherens junction in cells of the developing pupal retina. Reducing Pyd function in the pupal eye resulted in mis-patterning of the interommatidial cells and a failure to consistently switch cone cell contacts from an anterior-posterior to an equatorial-polar orientation. Levels of Roughest, DE-Cadherin and several other adherens junction-associated proteins were increased at the membrane when Pyd protein was reduced. Further, both over-expression and mutations in several junction-associated proteins greatly enhanced the patterning defects caused by reduction of Pyd. Our results suggest that Pyd modulates adherens junction strength and Roughest-mediated preferential cell adhesion. 相似文献
13.
《Cell cycle (Georgetown, Tex.)》2013,12(19):3984-3990
ING2 (Inhibitor of Growth 2) is a candidate tumor suppressive protein frequently lost in human tumors. Recently, we have reported that ING2 downregulation impairs DNA replication forks progression and leads to genome instability. To better understand the tumor suppressive functions of ING2 and its role in the cell cycle, we downregulated its expression in cells and studied the consequences of this downregulation on the G1/S transition. We observed that the inhibition of ING2 expression accelerated the progression of cells from G1 to S phase, and was accompanied by a decrease of p21 expression. Moreover, we show that the regulation of p21 by ING2 is independent, of the tumor suppressive protein p53. Interestingly, this function seems to be unique for ING2 since its closest homologue ING1 does not regulate the G1/S transition. It has been suggested previously that ING2 may modulate the trimethylation of H3K4 at the promoter of p21. Accordingly, our results suggest that there may be a link between the regulation of the G1/S transition by ING2 and the level of H3K4Me3. All together, these results bring new information concerning the role of ING2 in the regulation of the cell cycle and suggest that it may play important roles in controlling several S phase checkpoints. 相似文献
14.
Heat shock protein 27 controls apoptosis by regulating Akt activation 总被引:16,自引:0,他引:16
Rane MJ Pan Y Singh S Powell DW Wu R Cummins T Chen Q McLeish KR Klein JB 《The Journal of biological chemistry》2003,278(30):27828-27835
Activation of the serine-threonine kinase Akt by cytokines, chemokines, and bacterial products delays constitutive neutrophil apoptosis, resulting in a prolonged inflammatory response. We showed previously that Akt exists in a signaling complex with p38 MAPK, MAPK-activated protein kinase-2 (MAPKAPK-2), and heat shock protein-27 (Hsp27); and Hsp27 dissociates from the complex upon neutrophil activation. To better understand the regulation of this signaling module, the hypothesis that Akt phosphorylation of Hsp27 regulates its interaction with Akt was tested. The present study shows that Akt phosphorylated Hsp27 on Ser-82 in vitro and in intact cells, and phosphorylation of Hsp27 resulted in its dissociation from Akt. Additionally, the interaction between Hsp27 and Akt was necessary for activation of Akt in intact neutrophils. Constitutive neutrophil apoptosis was accelerated by sequestration of Hsp27 from Akt, and this enhanced rate of apoptosis was reversed by introduction of constitutively active recombinant Akt. Our results define a new mechanism by which Hsp27 regulates apoptosis, through control of Akt activity. 相似文献
15.
We have shown that inhibition of mTOR in granulosa cells and ovarian follicles results in compromised granulosa proliferation and reduced follicle growth. Further analysis here using spontaneously immortalized rat granulosa cells has revealed that mTOR pathway activity is enhanced during M-phase of the cell cycle. mTOR specific phosphorylation of p70S6 kinase and 4E-BP, and expression of Raptor are all enhanced during M-phase. The predominant effect of mTOR inhibition by the specific inhibitor Rapamycin (RAP) was a dose-responsive arrest in the G1 cell cycle stage. The fraction of granulosa cells that continued to divide in the presence of RAP exhibited a dose-dependent increase in aberrant mitotic figures known as anaphase bridges. Strikingly, estradiol consistently decreased the incidence of aberrant mitotic figures. In mice treated with RAP, the mitotic index was reduced compared to controls, and a similar increase in aberrant mitotic events was noted. RAP injected during a superovulation regime resulted in a dose-dependent reduction in the numbers of eggs ovulated. Implications for the real-time regulation of follicle growth and dominance, including the consequences of increased numbers of aneuploid granulosa cells, are discussed. 相似文献
16.
Dictyostelium discoideum cells normally exist as individual amoebae, but will enter a period of multicellular development upon starvation. The initial stages of development involve the aggregation of individual cells, using cAMP as a chemoattractant. Chemotaxis is initiated when cAMP binds to its receptor, cAR1, and activates the associated G protein, Gα2βγ. However, chemotaxis will not occur unless there is a high density of starving cells present, as measured by high levels of the secreted quorum sensing molecule, CMF. We previously demonstrated that cells lacking PldB bypass the need for CMF and can aggregate at low cell density, whereas cells overexpressing pldB do not aggregate even at high cell density. Here, we found that PldB controlled both cAMP chemotaxis and cell sorting. PldB was also required by CMF to regulate G protein signaling. Specifically, CMF used PldB, to regulate the dissociation of Gα2 from Gβγ. Using fluorescence resonance energy transfer (FRET), we found that along with cAMP, CMF increased the dissociation of the G protein. In fact, CMF augmented the dissociation induced by cAMP. This augmentation was lost in cells lacking PldB. PldB appears to mediate the CMF signal through the production of phosphatidic acid, as exogenously added phosphatidic acid phenocopies overexpression of pldB. These results suggest that phospholipase D activity is required for CMF to alter the kinetics of cAMP-induced G protein signaling. 相似文献
17.
Requirement of neuropilin 1-mediated Sema3A signals in patterning of the sympathetic nervous system 总被引:5,自引:0,他引:5
Kawasaki T Bekku Y Suto F Kitsukawa T Taniguchi M Nagatsu I Nagatsu T Itoh K Yagi T Fujisawa H 《Development (Cambridge, England)》2002,129(3):671-680
Neuropilin 1 is the specific receptor for Sema3A and plays a role in nerve fiber guidance. We report that neuropilin 1 and Sema3A mutant mouse embryos, generated by targeted gene disruption, showed displacement of sympathetic neurons and their precursors and abnormal morphogenesis in the sympathetic trunk. We also show that Sema3A suppressed the cell migration activity of sympathetic neurons from wild-type but not neuropilin 1 mutant embryos in vitro and instead promoted their accumulation into compact cell masses and fasciculation of their neurites. These findings suggest that the neuropilin 1-mediated Sema3A signals regulate arrest and aggregation of sympathetic neuron precursors and sympathetic neurons themselves at defined target sites and axon fasciculation to produce the stereotyped sympathetic nerve pattern. 相似文献
18.
CCCTC-binding factor controls its own nuclear transport via regulating the expression of importin 13
CCCTC-binding factor (CTCF), a multivalent zinc-finger protein, is involved in different aspects of regulation including promoter activation or repression, gene silencing, chromatin insulation, gene imprinting, X-chromosome inactivation, cell growth or differentiation and tumor genesis. However, the molecular mechanisms of CTCF nuclear import remains unclear. In this study, we showed that the expression of CTCF influenced the intracellular distribution of itself, which might go through transport receptor - import 13 (IPO13). We further confirmed that there is a CTCF target site in ipo13 -774∼-573 bp promoter region and CTCF regulates the expression of IPO13. Besides, GST pull-down and Co-IP experiments demonstrated that CTCF interacts with IPO13. Immunofluorescence staining showed that IPO13 influenced intracellular distribution of CTCF. In all, we conclude that CTCF regulates the expression of IPO13, which, in turn, mediates the nuclear import of CTCF. 相似文献
19.
20.
Byung-Soo Choi Ji Eun ParkChang-Young Jang 《Biochemical and biophysical research communications》2014
Sirt3, one of mammalian sirtuins is a prominent mitochondrial deacetylase that controls mitochondrial oxidative pathways and the rate of reactive oxygen species. Sirt3 also regulates energy metabolism by deacetylating enzymes involved in the metabolic pathway related with lifespan. We report here a novel function of Sirt3 which was found to be involved in mitosis. Depletion of the Sirt3 protein generated unaligned chromosomes in metaphase which caused mitotic arrest by activating spindle assembly checkpoint (SAC). Furthermore, the shape and the amount of the spindles in Sirt3 depleted cells were abnormal. Microtubule (MT) polymerization also increased in Sirt3 depleted cells, suggesting that Sirt3 is involved in spindle dynamics. However, the level of acetylated tubulin was not increased significantly in Sirt3 depleted cells. The findings collectively suggest that Sirt3 is not a tubulin deacetylase but regulates the attachment of spindle MTs to the kinetochore and the subsequent chromosome alignment by increasing spindle dynamics. 相似文献