首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004.  相似文献   

5.
6.
7.
The microRNA (miRNA) pathway represents an integral component of the gene regulation circuitry that controls development. In recent years, the role of miRNAs in embryonic stem (ES) cells and mammalian embryogenesis has begun to be explored. A few dozens of miRNAs expressed in mammalian ES cells, either exclusively or nonexclusively, have been cloned. The overall role of miRNAs in ES cells and embryonic development has been assessed by examining the effect of knocking out Dicer, an RNase III enzyme required for miRNA and small interfering RNA biogenesis, as well as DGCR8, a nuclear protein specifically involved in miRNA biogenesis. In addition, the role of a cluster of miRNAs specifically expressed in ES cells, the miR-290-295 group, has been investigated by the knock-out approach. These analyses have revealed the crucial role of miRNAs in ES cell differentiation, lineage specification, and organogenesis, especially neurogenesis and cardiogenesis. Systematic investigation of the role of miRNAs in ES cells and embryos will allow us to find missing pieces of the mosaic of early development.  相似文献   

8.
9.
10.
Chen L  Ren Y  Zhang Y  Xu J  Zhang Z  Wang Y 《Planta》2012,235(5):873-883
MicroRNAs (miRNAs) are small RNAs, generally of 20–23 nt, that down-regulate target gene expression during development, differentiation, growth, and metabolism. In Populus, extensive studies of miRNAs involved in cold, heat, dehydration, salinity, and mechanical stresses have been performed; however, there are few reports profiling the miRNA expression patterns during pathogen stress. We obtained almost 38 million raw reads through Solexa sequencing of two libraries from Populus inoculated and uninoculated with canker disease pathogen. Sequence analyses identified 74 conserved miRNA sequences belonging to 37 miRNA families from 154 loci in the Populus genome and 27 novel miRNA sequences from 35 loci, including their complementary miRNA* strands. Intriguingly, the miRNA* of three conserved miRNAs were more abundant than their corresponding miRNAs. The overall expression levels of conserved miRNAs increased when subjected to pathogen stress, and expression levels of 33 miRNA sequences markedly changed. The expression trends determined by sequencing and by qRT-PCR were similar. Finally, nine target genes for three conserved miRNAs and 63 target genes for novel miRNAs were predicted using computational analysis, and their functions were annotated. Deep sequencing provides an opportunity to identify pathogen-regulated miRNAs in trees, which will help in understanding the regulatory mechanisms of plant defense responses during pathogen infection.  相似文献   

11.
12.
MicroRNAs (miRNAs) are important regulators of plant development and fruit formation. Mature embryos of hickory (Carya cathayensis Sarg.) nuts contain more than 70% oil (comprising 90% unsaturated fatty acids), along with a substantial amount of oleic acid. To understand the roles of miRNAs involved in oil and oleic acid production during hickory embryogenesis, three small RNA libraries from different stages of embryogenesis were constructed. Deep sequencing of these three libraries identified 95 conserved miRNAs with 19 miRNA*s, 7 novel miRNAs (as well as their corresponding miRNA*s), and 26 potentially novel miRNAs. The analysis identified 15 miRNAs involved in oil and oleic acid production that are differentially expressed during embryogenesis in hickory. Among them, nine miRNA sequences, including eight conserved and one novel, were confirmed by qRT-PCR. In addition, 145 target genes of the novel miRNAs were predicted using a bioinformatic approach. Our results provide a framework for better understanding the roles of miRNAs during embryogenesis in hickory.  相似文献   

13.
MicroRNAs (miRNAs) are 22 nt non-coding RNAs that regulate expression of downstream targets by messenger RNA (mRNA) destabilization and translational inhibition. A large number of eukaryotic mRNAs are targeted by miRNAs, with many individual mRNAs being targeted by multiple miRNAs. Further, a single miRNA can target hundreds of mRNAs, making these small RNAs powerful regulators of cell fate decisions. Such regulation by miRNAs has been observed in the maintenance of the embryonic stem cell (ESC) cell cycle and during ESC differentiation. MiRNAs can also promote the dedifferentiation of somatic cells to induced pluripotent stem cells. During this process they target multiple downstream genes, which represent important nodes of key cellular processes. Here, we review these findings and discuss how miRNAs may be used as tools to discover novel pathways that are involved in cell fate transitions using dedifferentiation of somatic cells to induced pluripotent stem cells as a case study.  相似文献   

14.
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.  相似文献   

15.
Chen Q  Lu L  Hua H  Zhou F  Lu L  Lin Y 《PloS one》2012,7(3):e32860

Background

The brown planthopper (BPH), Nilaparvata lugens (Stå;l), which belongs to Homopteran, Delphacidae, is one of the most serious and destructive pests of rice. Feeding BPH with homologous dsRNA in vitro can lead to the death of BPH, which gives a valuable clue to the prevention and control of this pest, however, we know little about its small RNA world.

Methodology/Principal Findings

Small RNA libraries for three developmental stages of BPH (CX-male adult, CC-female adult, CY-last instar female nymph) had been constructed and sequenced. It revealed a prolific small RNA world of BPH. We obtained a final list of 452 (CX), 430 (CC), and 381 (CY) conserved microRNAs (miRNAs), respectively, as well as a total of 71 new miRNAs in the three libraries. All the miRNAs had their own expression profiles in the three libraries. The phylogenic evolution of the miRNA families in BPH was consistent with other species. The new miRNA sequences demonstrated some base biases.

Conclusion

Our study discovered a large number of small RNAs through deep sequencing of three small RNA libraries of BPH. Many animal-conserved miRNA families as well as some novel miRNAs have been detected in our libraries. This is the first achievement to discover the small RNA world of BPH. A lot of new valuable information about BPH small RNAs has been revealed which was helpful for studying insect molecular biology and insect resistant research.  相似文献   

16.
17.
MicroRNAs (miRNA) are a class of non-coding RNAs that have important gene regulatory roles in various organisms. However, the miRNAs involved in soybean’s response to soybean mosaic virus (SMV) are unknown. To identify novel miRNAs and biotic-stress regulated small RNAs that are involved in soybean’s response to SMV, two small RNA libraries were constructed from mock-inoculated and SMV-infected soybean leaves and sequenced. This led to the discovery of 179 miRNAs, representing 52 families, among which five miRNAs belonging to three families were novel miRNAs in soybean. A large proportion (71.5 %) of miRNAs arose from segmental duplication, similar to the process that drives the evolution of protein-coding genes. In addition, we predicted 346 potential targets of these identified miRNAs, and verified 12 targets by modified 5′-RACE analysis. Finally, three miRNAs (miR160, miR393 and miR1510) that are involved in plant resistance were observed to respond to SMV infection. The interaction between miRNAs and resistance-related genes provides a novel mechanism for pathogens to evade host recognition.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号