首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since Gross and Lapiere firstly discovered matrix metalloproteinases (MMPs) as important collagenolytic enzymes during amphibian tadpole morphogenesis in 1962, this intriguing family of extracellular proteinases has been implicated in various processes of developmental biology. However, the pathogenic roles of MMPs in human diseases such as cancer have also garnered widespread attention. The most straightforward explanation for their role in cancer is that MMPs, through extracellular matrix degradation, pave the way for tumor cell invasion and metastasis. While this notion may be true for many circumstances, we now know that, depending on the context, MMPs may employ additional modes of functionality. Here, we will give an update on the function of MMPs in development and cancer, which may directly regulate signaling pathways that control tissue homeostasis and may even work in a non-proteolytic manner. These novel findings about the functionality of MMPs have important implications for MMP inhibitor design and may allow us to revisit MMPs as drug targets in the context of cancer and other diseases.  相似文献   

2.
Mesangial cells are pericyte-like cells which are found the glomeruli of the kidney. It is well known that they have important contractile and synthetic properties regulating the function of the glomerulus. During diabetes the synthesis of various extracellular matrix (ECM) components by mesangial cells are increased. In recent years it has been recognized that degradation of ECM may also be decreased in diabetes, contributing to the process of mesangium accumulation. The major enzymes responsible for ECM degradation are a large group of enzymes collectively known as matrix metalloproteinases (MMPs). The physiology of MMPs is complex and their activity is tightly regulated at many levels. The MMPs are synthesized as proenzymes and require activation via catalytic cleavage to become fully active. In this regard it is of importance that the mesangial cell and its pericellular matrix have a very active plasminogen cascade that can liberate plasmin locally to mediate matrix degradation both directly and indirectly, by activating the MMPs. In addition, the MMPs are regulated by transforming growth factor beta (TGF-beta). There is evidence that each of these pathways regulating the matrix degradation is affected by the diabetic environment and this will be the subject of this contribution.  相似文献   

3.
The Wnt gene family, which encodes secreted growth and differentiation factors, has been implicated in kidney organogenesis. The Wnts control both ureteric bud development and signaling, but they also serve as inductive factors to regulate nephrogenesis in the mesenchcymal cells. Several of the Wnt genes are expressed in the developing kidney, and gene knock-out studies have revealed specific developmental functions for these. Consistent with this, changes in Wnt ligands and pathway components are associated with many kidney diseases, including kidney cancers, renal fibrosis, cystic kidney diseases, acute renal failure, diabetic nephropathy and ischaemic injury. It is these associations of the Wnt signaling system with kidney development and kidney diseases that form to topic of this review.Key words: Wnt signaling, tubule induction, ureter development, kidney diseases, kidney cancer  相似文献   

4.
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.   总被引:12,自引:0,他引:12  
The matrix metalloproteinases (MMPs) constitute a multigene family of over 23 secreted and cell-surface associated enzymes that cleave or degrade various pericellular substrates. In addition to virtually all extracellular matrix (ECM) compounds, their targets include other proteinases, chemotactic molecules, latent growth factors, growth factor-binding proteins and cell surface molecules. The MMP activity is controlled by the physiological tissue inhibitors of MMPs (TIMPs). There is much evidence that MMPs and their inhibitors play a key role during extracellular remodeling in physiological situations and in cancer progression. They have other functions that promoting tumor invasion. Indeed, they regulate early stages of tumor progression such as tumor growth and angiogenesis. Membrane type MMPs (MT-MMPs) constitute a new subset of cell surface-associated MMPs. The present review will focus on MT1-MMP which plays a major role at least, in the ECM remodeling, directly by degrading several of its components, and indirectly by activating pro-MMP2. As our knowledge on the field of MT1-MMP biology has grown, the unforeseen complexities of this enzyme and its interaction with its inhibitor TIMP-2 have emerged, often revealing unexpected mechanisms of action.  相似文献   

5.
The matrix metalloproteinases (MMPs) constitute a family of secreted/cell-surface-anchored multidomain zinc endopeptidases, all of which exhibit a catalytic domain of a common metzincin-like topology, and which are involved in degradation of the extracellular matrix but also in a number of other biologic processes. Normally, the proteolytic activity of the MMPs is precisely regulated by their main endogenous protein inhibitors, in particular the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumor growth, and tumor metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties and their associations with dysfunctions. Since the reports of the first atomic structures of MMPs and TIMPs in 1994, considerable structural information has become available about both of these families of substances. Many of the MMP structures have been determined as complexes with synthetic inhibitors, facilitating knowledge-based drug design. This review focuses on the currently available 3D structural information about MMPs and TIMPs.  相似文献   

6.
7.
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that cleave protein components of extracellular matrix such as collagens, laminin, fibronectin, proteoglycans and contribute to cell migration by eliminating the surrounding extracellular matrix and basement membrane barriers. However, the extracellular matrix is not simply an extracellular scaffold because, for example, it contains sites that can bind growth factors; therefore, degradation of the extracellular matrix components by MMPs can alter cellular behavior. MMPs also cleave a variety of non-ECM proteins, including cytokines, chemokines, and growth factors, activating or inactivating them, or generating other products that have biological consequences. The immune system is also influenced by MMPs. For that reason, the function of MMPs is much more complex and subtle than simple demolition. MMPs are essential for embryonic development and morphogenesis, however, exuberant expression of these enzymes has been associated with a variety of destructive diseases, including tumor progression, cardiovascular diseases and autoimmune diseases.  相似文献   

8.
Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.  相似文献   

9.
ABSTRACT

Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.  相似文献   

10.
Circular RNA (circRNA) is a newly described type of non‐coding RNA. Active research is greatly enriching the current understanding of the expression and role of circRNA, and a large amount of evidence has implicated circRNA in the pathogenesis of certain renal diseases, such as renal cell carcinoma, acute kidney injury, diabetic nephropathy and lupus nephritis. Studies have found evidence that circRNAs regulate programmed cell death, invasion, and metastasis and serve as biomarkers in renal diseases. Recently, circRNAs were identified in exosomes secreted by the kidneys. Nevertheless, the function of circRNA in renal diseases remains ambiguous. Given that circRNAs are regulators of gene expression, they may be involved in the pathology of multiple renal diseases. Additionally, emerging evidence is showing that circulating circRNAs may serve as novel biomarkers for renal disease. In this review, we have summarized the identification, biogenesis, degradation, and functions of circRNA and have evaluated the roles of circRNA in renal diseases.  相似文献   

11.
Macrophages are essential in development, repair and pathology of a variety of tissues via their roles in tissue remodelling, wound healing and inflammation. These biological functions are also associated with a number of human diseases, for example tumour associated macrophages have well defined functions in cancer progression. Xenopus embryonic macrophages arise from a haematopoietic stem cell population by direct differentiation and act as the main mechanism of host defence, before lymphoid cells and a circulatory system have developed. This function is conserved in mouse and human development. Macrophages express a number of matrix metalloproteinases (MMPs), which are central to their function. MMPs are a large family of zinc-dependent endoproteases with multiple roles in extracellular matrix remodelling and the modulation of signalling pathways. We have previously shown MMP-7 to be expressed by Xenopus embryonic macrophages. Here we investigate the role of MMP-7 and two other MMPs (MMP-18 and MMP-9) that are also expressed in the migrating macrophages. Using morpholino (MO) mediated knockdown of each of the MMPs we demonstrate that they are necessary for normal macrophage migration in vivo. The loss-of-function effect can be rescued using the specific MMPs, altered to be resistant to morpholinos but not by overexpression of the other MMPs. Double and triple morpholino knockdowns further suggest that these MMPs act combinatorily to promote embryonic macrophage migration. Thus, our results imply that these three MMPs have distinct functions, which together are crucial to mediate macrophage migration in the developing embryo. This demonstrates conclusively that MMPs are required for normal macrophage cell migration in the whole organism.  相似文献   

12.
《Bioscience Hypotheses》2008,1(4):209-212
Amyloid related organ dysfunction is a common feature of conditions associated with chronic oxidative injury such as diabetes, inflammation, neurodegenerative disorders, renal failure, and natural aging. Matrix metalloproteinases (MMPs) are a family of calcium and zinc-dependent endopeptidases comprised of 23 enzymes in the human. Among these, MMPs 2 and 9 are known as secretable forms, present in all body fluids and susceptible to activation by oxidants. Although MMPs are generally accepted and named for their effect on extracellular matrix turnover, their non-extracellular-matrix targets have emerged recently. Cystatin C (CysC) is a very potent inhibitor of cysteine proteinases, present in all body fluids. Its solubility is determined by its N-terminal sequence. CysC is known to polimerize and form fibrils and has been isolated from amyloids. The CysC isolated from amyloids is in the N-terminal truncated form. My hypothesis regarding amyloid formation is that CysC could be a substrate for MMPs 2 and 9, which upon cleaving the N-terminal off the CysC protein will render it insoluble and promote amyloid formation. Several in vitro studies have demonstrated degradation of CysC by MMPs. The implications of such a degradation in kidney glomerules (where the clearance of CysC occurs) could be of importance for understanding the mechanism of kidney failure e.g. in diabetes. This proposed mechanism for amyloid formation through degradation of CysC by MMPs, can be proposed for all cases of CysC related amyloid formation, such as those seen in cerebrovascular, cardiac and rheumatoid disorders.  相似文献   

13.
TGF-beta in diabetic kidney disease: role of novel signaling pathways   总被引:7,自引:0,他引:7  
Diabetic nephropathy is the leading cause of end-stage renal disease in the United States and is a major contributing cause of morbidity and mortality in patients with diabetes. Despite conventional therapy to improve glycemic and blood pressure control the incidence of diabetic nephropathy is reaching epidemic proportions worldwide. As the major pathologic feature of diabetic nephropathy is diffuse mesangial matrix expansion, the pro-sclerotic cytokine transforming growth factor-beta, TGF-beta, is a leading candidate to mediate the progression of the disease. Numerous studies have now demonstrated that TGF-beta is a key factor in experimental models of diabetic kidney disease as well as in patients with diabetic nephropathy. Recent studies have begun to explore the mechanisms by which TGF-beta is stimulated by high glucose and how TGF-beta exerts its matrix-stimulating effects on renal cells. TGF-beta may also be involved in mediating the vascular dysfunction of diabetic kidney disease via its effects on the key intracellular calcium channel, the inositol trisphosphate receptor (IP(3)R). As there is substantial evidence for a cause and effect relationship between upregulation of TGF-beta and the progression of diabetic kidney disease, future studies will seek to establish specific targets along these pathways at which to intervene.  相似文献   

14.
The matrix metalloproteinase (MMP) family is heavily implicated in many diseases, including cancer. The developmental functions of these genes are not clear, however, because the >20 mammalian MMPs can be functionally redundant. Drosophila melanogaster has only two MMPs, which are expressed in embryos in distinct patterns. We created mutations in both genes: Mmp1 mutants have defects in larval tracheal growth and pupal head eversion, and Mmp2 mutants have defects in larval tissue histolysis and epithelial fusion during metamorphosis; neither is required for embryonic development. Double mutants also complete embryogenesis, and these represent the first time, to our knowledge, that all MMPs have been disrupted in any organism. Thus, MMPs are not required for Drosophila embryonic development, but, rather, for tissue remodeling.  相似文献   

15.
Matrix metalloproteinases in development and disease   总被引:3,自引:0,他引:3  
Matrix metalloproteinases (MMPs) are key modulators of many biological processes during pathophysiological events, such as skeletal formation, angiogenesis, cellular migration, inflammation, wound healing, coagulation, lung and cardiovascular diseases, arthritis, and cancer. Twenty-four members of the MMP family have been identified in humans, degrading many components of the extracellular matrix, cellular receptors, and cytokines. This review describes the molecular structure, activation and inhibition, and substrate specificity of MMPs, and their biological function in development and disease.  相似文献   

16.
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.  相似文献   

17.
An abundance of literature over the past several years indicates a growing interest in the role of matrix metalloproteinases (MMPs) in normal physiology and in disease pathology. MMPs were originally defined by their ability to degrade the extracellular matrix, but it is now well documented that their substrates extend far beyond matrix components. Recent reviews discuss the structure and function of the MMP family members, as well as the promoter sequences that control gene expression. Thus, we focus on the signal transduction pathways that confer differential cell-type expression of MMPs, as well as on some novel non-matrix degrading functions of MMPs, particularly their intracellular location where they may contribute to apoptosis. In addition, increasing data implicate MMPs as "good guys", protective agents in some cancers and in helping to resolve acute pathologic conditions. Despite the intricate and complicated roles of MMPs in physiology and pathology, the goal of designing therapeutics that can selectively target MMPs remains a major focus. Developing MMP inhibitors with targeted specificity will be difficult; success will depend on understanding the role of these enzymes in homeostasis and on the careful delineation of mechanisms by which this family of enzymes mediates disease pathology.  相似文献   

18.
Matrix metalloproteinase stromelysin-3 in development and pathogenesis   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) serves as a medium for cell-cell interactions and can directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation plays a critical role in cell fate and behavior during many developmental and pathological processes. ECM remodeling/degradation is, to a large extent, mediated by matrix metalloproteinases (MMPs), a family of extracellular or membrane-bound, Zn2+-dependent proteases that are capable of digesting various proteinaceous components of the ECM. Of particular interest among them is the MMP11 or stromelysin-3, which was first isolated as a breast cancer associated protease. Here, we review some evidence for the involvement of this MMP in development and diseases with a special emphasis on amphibian metamorphosis, a postembryonic, thyroid hormone-dependent process that transforms essentially every organ/tissue of the animal.  相似文献   

19.
A significant number of myocardial diseases are accompanied by increased synthesis and degradation of the extracellular matrix (ECM) as well as by changed maturation and incorporation of ECM components. Important groups of enzymes responsible for both normal and pathological processes in ECM remodeling are matrix metaloproteinases (MMPs). These enzymes share a relatively conserved structure with a number of identifiable modules linked to their specific functions. The most important function of MMPs is the ability to cleave various ECM components; including such rigid molecules as fibrillar collagen molecules. The amount and activity of MMPs in cardiac tissue are regulated by a range of activating and inhibiting processes. Although MMPs play multifarious roles in many myocardial diseases, here we have focused on their function in ischemic cardiac tissue, dilated cardiomyopathy and hypertrophied cardiac tissue. The inhibition of MMPs by means of synthetic inhibitors seems to be a promising strategy in cardiac disease treatment. Their effects on diseased cardiac tissue have been successfully tested in several experimental studies.  相似文献   

20.
Maskos K 《Biochimie》2005,87(3-4):249-263
Matrix Metalloproteinases (MMPs) are a family of multidomain zinc endopeptidases that function in the extracellular space or attached to the cell membrane. Their proteolytic activity is controlled by the presence of endogenous inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMPs), alpha-macroglobulin and others. Disruption of the proteinase-inhibitor balance is observed in serious diseases such as arthritis, tumor growth and metastasis, rendering the MMPs attractive targets for drug intervention by pharmacological inhibitors. The determination of MMP structures is of critical importance in order to understand their substrate preferences, dimerization events, and their association with matrix components and inhibitors. Thus, MMP structures may contribute significantly to the development of specific MMP inhibitors, which should allow precise control of individual members of the MMP family without affecting all members or the closely related metalloproteinases such as ADAMs and ADAMTSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号