首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
An endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae), possesses a mutualistic bracovirus (CpBV), which plays significant roles in the parasitized host, Plutella xylostella (Lepidoptera: Plutellidae). CpBV15beta, a viral gene encoded by CpBV, is expressed at early and late parasitization periods, suggesting that it functions to manipulate the physiology of the parasitized host. This paper reports a physiological function of CpBV15beta as an immunosuppressive agent. The effect of CpBV15beta on cellular immunity was analyzed by assessing hemocyte-spreading behavior. Parasitization by C. plutellae caused altered behavior of hemocytes of P. xylostella, in which the hemocytes were not able to attach and spread on glass slides. CpBV15beta was expressed in Sf9 cells using a baculovirus expression system and purified from the culture media. When hemocytes of nonparasitized P. xylostella were incubated with purified CpBV15beta protein, spreading behavior was impaired in a dose-dependent manner at low micro-molar range. This inhibitory effect of CpBV15beta could also be demonstrated on hemocytes of a non-natural host, Spodoptera exigua. CpBV15beta protein significantly inhibited F-actin growth of hemocytes in response to an insect cytokine. Similarly, cycloheximide, a eukaryotic translation inhibitor, strongly inhibited the spreading behavior and F-actin growth of P. xylostella hemocytes. Under in vitro condition, hemocytes of nonparasitized P. xylostella released proteins into the surrounding medium. Upon incubation of hemocytes with either CpBV15beta or cycloheximide, their ability to release protein molecules was markedly inhibited. This study suggests that CpBV15beta suppresses hemocyte behavior by inhibiting protein translation.  相似文献   

2.
Cotesia plutellae, a solitary endoparasitoid wasp, parasitizes the diamondback moth, Plutella xylostella, and induces host immunosuppression and lethality in the late larval stage. This study focused on changes of cellular immunity in the parasitized P. xylostella in terms of hemocyte composition and cellular functions. In third and fourth instar larvae of nonparasitized P. xylostella, granular cells represented the main hemocyte type (60-70%) and plasmatocytes were also present at around 15% among the total hemocytes. Following parasitization by C. plutellae, the relative proportions of these two major hemocytes changed very little, but the total hemocyte counts exhibited a significant reduction. Functionally, the granular cells played a significant role in phagocytosis based on a fluorescence assay using fluorecein isothiocyanate-labeled bacteria. The phagocytic activity of the granular cells occurred as early as 5 min after incubation with the bacteria, and increased during the first 40 min of incubation. The parasitism by C. plutellae significantly inhibited phagocytosis of the granular cells. Plasmatocytes also exhibited minor phagocytic activity. Moreover, plasmatocyte phagocytosis was not inhibited by parasitism. On the other hand, hemocyte-spreading behavior in response to pathogen infection was significant only for plasmatocytes, which exhibited a characteristic spindle shape upon infection. A significant spreading of the plasmatocytes was found as early as 5 min after pathogen incubation and their ratio increased during the first 40 min.An insect cytokine, plasmatocyte-spreading peptide 1 (PSP1) from Pseudoplusia includens, was highly active in inducing plasmatocyte-spreading behavior of P. xylostella in a dose-dependent manner. P. xylostella parasitized by C. plutella was significantly inhibited in plasmatocyte-spreading in response to an active dose of PSP1. An in vivo encapsulation assay showed that the parasitized P. xylostella could not effectively form the hemocyte capsules around injected agarose beads. This research demonstrates that the parasitism of C. plutellae adversely affects the total hemocyte populations in number and function, which would contribute to host immunosuppression.  相似文献   

3.
A range of crops have been transformed with delta-endotoxin genes from Bacillus thuringiensis (Bt) to produce transgenic plants with high levels of resistance to lepidopteran pests. Parasitoids are important natural enemies of lepidopteran larvae and the effects of Bt plants on these non-target insects have to be investigated to avoid unnecessary disruption of biological control. This study investigated the effects of Cry1Ac-expressing transgenic oilseed rape (Brassica napus) on the solitary braconid endoparasitoid Cotesia plutellae in small-scale laboratory experiments. C. plutellae is an important natural enemy of the diamondback moth (Plutella xylostella), the most important pest of brassica crops world-wide. Bt oilseed rape caused 100% mortality of a Bt-susceptible P. xylostella strain but no mortality of the Bt-resistant P. xylostella strain NO-QA. C. plutellae eggs laid in Bt-susceptible hosts feeding on Bt leaves hatched but premature host mortality did not allow C. plutellae larvae to complete their development. In contrast, C. plutellae developed to maturity in Bt-resistant hosts fed on Bt oilseed rape leaves and there was no effect of Bt plants on percentage parasitism, time to emergence from hosts, time to adult emergence and percentage adult emergence from cocoons. Weights of female progeny after development in Bt-resistant hosts did not differ between plant types but male progeny was significantly heavier on wildtype plants in one of two experiments. The proportion of female progeny was significantly higher on Bt plants in the first experiment with Bt-resistant hosts but this effect was not observed again when the experiment was repeated.  相似文献   

4.
Immunosuppression is the main pathological symptom of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae), parasitized by an endoparasitoid wasp, Cotesia plutellae (vestalis, Hymenoptera: Braconidae). C. plutellae bracovirus (CpBV), which is a symbiotic virus of C. plutellae, has been known to be the main parasitic factor in the host-parasitoid interaction. CpBV-lectin, encoded in the viral genome and expressed in P. xylostella during early parasitization stage, was suspected to play a role in immunoevasion of defense response. Here we expressed CpBV-lectin in Sf9 cells using a recombinant baculovirus for subsequent functional assays. The recombinant CpBV-lectin exhibited hemagglutination against vertebrate erythrocytes. Its hemagglutinating activity increased with calcium, but inhibited by adding EDTA, indicating its C-type lectin property. CpBV-lectin showed specific carbohydrate-binding affinity against N-acetyl glucosamine and N-acetyl neuraminic acid. The role of this CpBV-lectin in immunosuppression was analyzed by exposing hemocytes of nonparasitized P. xylostella to rat erythrocytes or FITC-labeled bacteria pretreated with recombinant CpBV-lectin, which resulted in significant reduction in adhesion or phagocytosis, respectively. The immunosuppressive activity of CpBV-lectin was further analyzed under in vitro encapsulation response of hemocytes against parasitoid eggs collected at 1- or 24-h post-parasitization. Hemocytic encapsulation was observed against 1-h eggs but not against 24-h eggs. When the 1-h eggs were pretreated with the recombinant CpBV-lectin, encapsulation response was completely inhibited, where CpBV-lectin bound to the parasitoid eggs, but not to hemocytes. These results suggest that CpBV-lectin interferes with hemocyte recognition by masking hemocyte-binding sites on the parasitoid eggs.  相似文献   

5.
The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6 h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6 h after injection. Dose–response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone.  相似文献   

6.
Abstract.  Teratocytes are cells that originate from the extra-embryonic tissues of some hymenopteran parasitoids, typically dissociate upon hatching, and develop in the host haemolymph. They are considered to be involved in parasitoid larval nutrient uptake, host immunosuppression and/or repression of competing parasitoid development. Teratocytes of the parasitoid, Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae) are found in its natural host, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae) and can be cultured in vitro . The present study demonstrates that teratocytes of C. plutellae possess a significantly depressive effect on host cellular immunity. When the hosts are preinjected with 200 cultured teratocytes (corresponding to the normal number of teratocytes released during wasp hatching), haemocyte nodulation is inhibited by approximately 40%, with younger teratocytes being more potent than older ones. Similarly, the medium in which teratocytes are cultured has similar immunosuppressive properties. In comparison, calyx fluid extracted from the C. plutellae ovary also has an immunosuppressive effect on P. xylostella . These two maternal (calyx fluid) and embryonic (teratocytes) factors are additive and result in a reduced level of nodule formation equivalent to that induced by natural parasitization. However, the immunosuppression of the parasitized P. xylostella does not appear to be due to inhibition of phospholipase A2, an immune mediator, because injection of arachidonic acid failed to restore haemocyte nodulation capability.  相似文献   

7.
In contrast to the situation with egg-larval and larval endoparasitic wasps, little is known about the effects of pupal endoparasitoids and their secretions on the hemocytes of their insect hosts. This study focuses on the pupal endoparasitoid, Pteromalus puparum, and its host, the small white butterfly, Pieris rapae. Parasitism by P. puparum, resulted in a significant increase in the total number of host hemocytes up to day five after parasitization. From day one to day four after parasitization, the percentage of plasmatocytes significantly decreased, and the proportion of granular cells increased. Moreover, from 12 h to day three after parasitization, hemocyte mortality in parasitized pupae was noticeably higher. When P. rapae pupae were parasitized by adult females of P. puparum irradiated by gamma-ray (pseudoparasitization), it was clear that the treated wasps could induce similar hemocyte changes. However, such phenomena did not occur in punctured host pupae (mimic-parasitization). After treatment with P. puparum venom, both the percentages of spreading plasmatocytes and encapsulated Sephadex G-25 beads were lessened significantly in vitro. Electron microscopy analysis and visualization of hemocyte F-actin with phalloidin-FITC showed that hemocytes treated with venom had a rounded configuration and neither spread nor extended pseudopods, while there was no marked alteration of hemocyte cytoskeletons after venom treatment. The results suggested that venom of P. puparum could actively suppress the hemocyte immune response of its host, but not by destroying the host hemocyte cytoskeleton.  相似文献   

8.
张忠  叶恭银  胡萃 《昆虫学报》2004,47(5):551-561
活体微注射测定结果表明,将0.5毒囊当量(venom reservoir equivalent, VRE)的蝶蛹金小蜂毒液注射于其寄主菜粉蝶蛹体内,注射后4~24 h寄主浆血细胞和颗粒血细胞的延展、存活和对Sephadex A50微珠的包囊能力显著下降;以0.002~0.02 VRE/μL的该蜂毒液处理其离体寄主血细胞均能产生同样的生理效应。该毒液抑制90%菜粉蝶蛹浆血细胞和颗粒血细胞延展的浓度各为0.00076 VRE/μL和0.00804 VRE/μL。可见,蝶蛹金小蜂毒液能显著抑制其寄主血细胞的延展和包囊作用,并导致血细胞的死亡。然而,同样条件下丽蝇蛹集金小蜂毒液对其非自然寄主菜粉蝶蛹的血细胞延展、存活和包囊作用则无任何效应。可见,寄生蜂毒液的生理作用具有明显的寄主特异性。  相似文献   

9.
颈双缘姬蜂毒液对寄主小菜蛾的免疫抑制作用   总被引:2,自引:0,他引:2  
对颈双缘姬蜂Diadromus collaris (Gravenhorst)及其毒液引起寄主小菜蛾Plutella xylostella的一些生理效应进行了研究。结果表明,颈双缘姬蜂寄生寄主后可引起寄主小菜蛾蛹总血细胞及浆血细胞和颗粒血细胞数量的上升。寄生后1天观察,血细胞延展行为受到影响,表现在颗粒血细胞放射状丝的产生及浆血细胞伪足的形成受到抑制。通过毒液对寄主离体幼虫血细胞延展行为、形态及活性影响的研究,发现毒液抑制了寄主离体浆血细胞的延展,但对颗粒血细胞的影响不明显;毒液引起寄主浆血细胞和颗粒血细胞的破裂和死亡,毒液对寄主幼虫血淋巴酚氧化酶活性有一定的抑制作用,当反应至40、60及80 min时,毒液处理和未经毒液处理的寄主血淋巴在490 nm处的吸光值差异比较明显。对毒液蛋白成分的聚丙烯酰胺凝胶电泳分析发现,毒液中有9种多肽,分子量介于9~50.2 kD,其中50.2、30.5、28.2、25.1 和12.6 kD的多肽含量较高, 与其他蜂毒液的一些作用已知的蛋白条带相似,因而推测它们同样具有免疫及发育抑制作用。结果证明颈双缘姬蜂毒液能破坏寄主细胞及体液因子调节的免疫反应。  相似文献   

10.
通过对被腰带长体茧蜂Macrocentrus cingulum Brischke寄生的5龄亚洲玉米螟Ostrinia furnacalis Guenée幼虫体内不同组织中酚氧化酶活性的测定,采用体外注射腰带长体茧蜂雌性成蜂的萼液成分、毒液成分、萼液与毒液混合物的方法,研究了寄生蜂各种主要生理因子对寄主血清中酚氧化酶活性的影响。结果表明: 寄生蜂寄生可明显抑制寄主体内的酚氧化酶活性,减少黑色素产生;被寄生组FITC标记的血细胞阳性百分率低于未被寄生组,差异极显著( P<0.01);萼液成分可明显地抑制亚洲玉米螟幼虫血清中酚氧化酶的活性 (P<0.01);萼液与毒液混合物对酚氧化酶活性也有明显抑制作用(P<0.01)。研究认为寄生蜂产卵时注入的萼液、毒液可对寄主昆虫酚氧化酶活性产生明显的抑制作用,其中萼液是抑制寄主免疫能力的主要因素。  相似文献   

11.
In hymenopteran parasitoids devoid of symbiotic viruses, venom proteins appear to play a major role in host immune suppression and host regulation. Not much is known about the active components of venom proteins in these parasitoids, especially those that have the functions involved in the suppression of host cellular immunity. Here, we report the isolation and characterization of a venom protein Vn.11 with 24.1 kDa in size from Pteromalus puparum, a pupa-specific endoparasitoid of Pieris rapae. The Vn.11 venom protein is isolated with the combination of ammonium sulfate precipitation and anion exchange chromatography, and its purity is verified using SDS-PAGE analysis. Like crude venom, the Vn.11 venom protein significantly inhibits the spreading behavior and encapsulation ability of host hemocytes in vitro. It is suggested that this protein is an actual component of P. puparum crude venom as host cellular-immune suppressive factor.  相似文献   

12.
We examined the changes of hemocytes in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), due to parasitism by the endoparasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). Necrosis of prohemocytes in different stages was observed while cell death was absent in the mature hemocytes in the parasitized larvae, which was related to the declined total hemocyte count per microliter (THC). THC in the host hemolymph declined sharply by 12 h post-parasitization and then remained at a low level. When hemocytes of the parasitized larvae were cultured in vitro, encapsulation ability was suppressed coincidently with the inhibited spreading ability; however, such effects were transient. Simultaneously, activation of the prophenoloxidae from the hemocytes was inhibited. Unlike the results of previous studies, the decrease in hemocytes, which was due to the necrosis of the prohemocytes instead of the mature hemocytes in our study, was not responsible for the impaired encapsulation. Our studies suggest that parasitism by D. semiclausum have some effects on hematopoietic regulation and on hemocyte immune reaction of P. xylostella larvae.  相似文献   

13.
《Journal of Asia》2006,9(4):339-346
A gregarious endoparasitoid wasp, Cotesia glomerata, parasitizes the cabbage butterfly, Pieris rapae. During wandering larval stage for pupal metamorphosis, the parasitoid larvae egress from the parasitized host to form cocoons thus eventually leading to death of the host. This study focused on the effect of C. glomerata parasitization on cellular immune response of P. rapae. For this purpose, an ideal anticoagulant buffer was formulated to procure the hemocytes in native form with morphological, behavioral, and functional characteristics. The hemocytes selectively encapsulated only DEAE beads under in vitro conditions and a quantitative study revealed about 70% of the beads being encapsulated. On the other hand, calyx fluid from C. glomerata injected to P. rapae markedly inhibited the spreading ability of the hemocytes in a dose-dependent manner and also attenuated the in vitro encapsulation response of the hemocytes against the cationic bead. The calyx fluid contained polydnavirus as well as ovarian proteins. The isolated polydnavirus genome consisted of variously sized-segments with their unequal amounts. The P. rapae injected with the calyx fluid expressed several polydnaviral genes within 2 h. These results suggest that the immunosuppression of the parasitized P. rapae may be induced by the polydnaviral gene products as well as ovarian proteins.  相似文献   

14.
Endoparasitoid wasps have evolved various mechanisms to ensure successful development of their progeny, including co-injection of a cocktail of maternal secretions into the host hemocoel, including venom, calyx fluid, and polydnaviruses. The components of each type of secretion may influence host physiology and development independently or in a synergistic fashion. For example, venom fluid consists of several peptides and proteins that promote expression of polydnavirus genes in addition to other activities, such as inhibition of prophenoloxidase activation, inhibition of hemocytes spreading and aggregation, and inhibition of development. This review provides a brief overview of advances and prospects in the study of venom proteins from polydnavirus-producing endoparasitoid wasps with a special emphasis on the role of C. rubecula venom proteins in host-parasitoid interactions.  相似文献   

15.
Baculoviruses and parasitoids are critically important biological control agents in integrated pest management (IPM). They have been simultaneously and sequentially used to target insect pests. In this study, we examined the impacts of both baculovirus and polydnavirus (PDV) infection on the host cellular immune response. Larvae of the lepidopteran Spodoptera litura were infected by Spodoptera litura multicapsid nucleopolyhedrovirus (SpltMNPV) and then the animals were parasitized by the braconid wasp Microplitis bicoloratus. The fate of the parasitoids in the dually infected hosts was followed and encapsulation of M. bicoloratus first instar larvae was observed. Hemocytes of S. litura larvae underwent apoptosis in naturally parasitized hosts and in non-parasitized larvae after injection of M. bicoloratus ovarian calyx fluid (containing MbPDV) plus venom (CFPV). However, assessments of the percentages of cells undergoing apoptosis under different treatments indicated that SpltMNPV could inhibit MbPDV-induced apoptosis in hemocytes when hosts were first injected with SpltMNPV budded virus (BV) followed by injection with M. bicoloratus CFPV. As the time of injection with SpltMNPV BV increased, the percentages of apoptosis in hemocytes population declined. Furthermore, in vitro, the percentages of apoptosis showed that SpltMNPV BV could inhibit MbPDV-induced granulocytes apoptosis. The occurrence of MbPDV-induced host granulocytes apoptosis was inhibited in the dually infected hosts. As hemocytes apoptosis causes host immunosuppression, the parasitoids are normally protected from the host immune system. However, in larvae infected with both baculovirus and PDV, the parasitoids underwent encapsulation in the host hemocoel.  相似文献   

16.
Abstract.  1. Little is known about underlying mechanisms by which plants indirectly affect parasitism success in hymenopteran endoparasitoids. The hypothesis that host-plant effects can challenge the innate immune system of an insect host was experimentally tested in this study using a model tritrophic, crucifer – lepidopteran [ Plutella xylostella (L.)] – parasitoid [ Cotesia plutellae (Kurdjumov)], system.
2. The effects of host-plant suitability on herbivore performance and parasitism were examined. The bottom-up effect of plant suitability on host-parasitoid immune responses was then evaluated using measures of cellular and humoral effectors.
3. Host-plant quality showed a significant effect on the encapsulation response of P. xylostella to first instar but not to second instar parasitoid larvae. Encapsulation was never sufficient to prevent parasitoid emergence.
4. Poor host-plant suitability suppressed phenoloxidase activity in the absence of the parasitoid. The suppressive effect of C. plutellae on phenoloxidase activity was much greater and no plant effects were detectable after insects had been parasitized.
5. Despite strong plant effects on parasitism, those on immune effectors of the host were transitory or overwhelmed by the effect of the parasitoid.
6. These results demonstrated that plant-mediated variation in parasitism success by C. plutellae were not as a result of plant nutritional status or other attributes affecting the immune function of P. xylostella , nor to host-plant effects on superparasitism.
7. In these experiments, P. xylostella was a fully permissive host to C. plutellae and host-plant-mediated effects on the innate immune response appeared to play no part in parasitoid survival within hosts.  相似文献   

17.
Previous research established different interactions of the insect pathogen, Xenorhabdus nematophila and nonpathogen, Bacillus subtilis, with antimicrobial hemocytes and humoral factors of larval Malacosoma disstria [Giannoulis, P., Brooks, C.L., Dunphy, G.B., Mandato, C.A., Niven, D.F., Zakarian, R.J., 2007. Interaction of the bacteria Xenorhabdus nematophila (Enterobacteriaceae) and Bacillus subtilis (Bacillaceae) with the hemocytes of larval Malacosoma disstria (Insecta: Lepidoptera: Lasicocampidae). J. Invertebr. Pathol. 94, 20-30]. The antimicrobial systems were inhibited by X. nematophila and stimulated by B. subtilis. The bacterial surface antigens participating in these reactions were unknown. Thus, herein the effects of lipopolysaccharide (endotoxin) from X. nematophila and lipoteichoic acid from B. subtilis on the larval M. disstria immune factors, the hemocytes and phenoloxidase, were determined. Endotoxin elevated the level of damaged hemocytes limiting the removal of X. nematophila from the hemolymph and enhancing the rapid release of bacteria trapped by nodulation. Similar effects were observed with the lipid A moiety of the endotoxin. The effects of lipopolysaccharide and lipid A on the hemocyte activities were abrogated by polymyxin B (an antibiotic that binds to lipid A) confirming lipopolysaccharide as the hemocytotoxin by virtue of the lipid A moiety. Lipoteichoic acid elicited nodulation and enhanced phenoloxidase activation and/or activity. Although lipoidal endotoxin and lipid A inhibited phenoloxidase activation they enhanced the activity of the enzyme. Apolipophorin-III precluded the effects of lipopolysaccharide, lipid A, and lipoteichoic acid on the hemocytes and prophenoloxidase until the antigens exceeded a critical threshold.  相似文献   

18.
Calyx fluid and venom from the braconid parasitoid Microplitis demolitor differentially affected the development of Pseudoplusia includens and Heliothis virescens. P. includens exhibited delays in larval development, supernumerary instars, and formed larval-pupal intermediates when injected with 0.01-0.10 wasp equivalents of calyx fluid. In contrast, H. virescens was relatively unaffected by calyx fluid regardless of dose. Venom did not affect the development of either host species, but appeared to synergize the activity of calyx fluid. This was particularly evident in H. virescens, where injection of 0.10-0.20 wasp equivalents of calyx fluid and venom induced the formation of a large number of intermediates while the same amount of calyx fluid did not. The particulate portion of M. demolitor calyx fluid was the only component that caused developmental delays and the formation of intermediates in both host species. Purified virus caused developmental alterations in P. includens, while trioxsalen treated calyx fluid did not affect development of P. includens or H. virescens. These data suggest the requirement for venom in parasitism may differ between host species, and that dosage plays an important role in interpreting the interaction between calyx and venom components.  相似文献   

19.
Effects of female wasp reproductive gland secretions, host fat body and hemolymph, and mechanical constriction of the parasitoid egg on protein synthesis were studied in eggs of Microplitis croceipes (Braconidae) dissected from the wasp ovary. Protein synthesis was measured by 35S-methionine incorporation in eggs held in tissue culture medium for 16 h after treatment. Synthesis was stimulated in oocytes obtained from three regions of the ovary (egg tube, reservoir, and calyx) by fat body and venom gland but not by calyx fluid. A combination of fat body, venom gland, and calyx fluid did not enhance the level of synthesis relative to that of fat body or venom gland alone. Host hemolymph inhibited protein synthesis when incubated directly with the dissected eggs but not when the eggs were collected from an artificial oviposition substrate (AOS) containing hemolymph. The inhibitory effect of the hemolymph is thought to be due to the occurrence of melanization. Mechanical constriction did not alter the rate of synthesis, confirming an earlier report that synthesis in newly deposited eggs in ongoing and is not dependent on mechanical activation during the act of oviposition. Mechanisms responsible for sustaining protein synthesis in eggs for 16 h in vitro after their exposure to host hemolymph in the AOSs or fat body and venom gland are not known. Only a small percentage (less than 2%) of dissected ovarial reservoir oocytes that were mechanically constricted and exposed to the venom gland, calyx fluid, and host fat body hatched in vitro. In contrast, an earlier study demonstrated that 38% of eggs oviposited by female wasps into AOSs developed and hatched.  相似文献   

20.
The immunological and developmental effects of bracoviruses (BVs) from three parasitoids in the genus Microplitis (Braconidae: Microgastrinae) were compared in the hosts Pseudoplusia includens and Heliothis virescens (Lepidoptera: Noctuidae). Southern blotting experiments indicated that viral DNAs from Microplitis demolitor bracovirus (MdBV) cross-hybridized with viral DNAs from Microplitis croceipes bracovirus (McBV) and Microplitis mediator bracovirus (MmBV) under conditions of high stringency. Injection of calyx fluid plus venom from each parasitoid species dose-dependently delayed development of P. includens and H. virescens. Each virus also inhibited pupation of P. includens but not H. virescens. In situ hybridization experiments indicated that MdBV and McBV persistently infect hemocytes in both hosts while MmBV persistently infects hemocytes in P. includens but not H. virescens. While MdBV infection induced a loss of adhesion by most plasmatocytes, McBV and MmBV infection induced a loss of adhesion in less than 50% of cells. Cross-protection experiments indicated that calyx fluid plus venom from one species usually protected progeny of another species from encapsulation but did not always promote successful development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号