首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于思维脑电信号的假手的研究   总被引:1,自引:1,他引:0  
本文主要研究利用思维脑电信号来控制假手动作。采用小波变换对思维脑电信号进行分解,选取合适的子带信号并提取相应能量特征,组成特征向量输入BP神经网络进行分类识别。整个信号处理过程在LabVIEW软件平台上实现,并利用其串口通信模块输出控制指令来控制假手的张开和闭合。  相似文献   

2.
小波和主分量分析方法研究思维脑电   总被引:4,自引:0,他引:4  
研究自发脑电和思维活动的关系.利用小波和主分量分析结合的WPCA算法对不同思维任务记录的六导脑电进行处理,并对思维特征的频谱能量和变化率等多指标进行综合分析和计算。结果表明WPCA算法不仅可以实现噪声的去除,而且能提高主分量的贡献率,降低输入矢量的维数。对脑电主分量的分析揭示了脑电与思维个体、思维种类、复杂度以及注意力的联系,思维任务的神经网络分类结果验证了WPCA方法研究脑电和思维的有效性,为进一步理解认知和思维过程,实现对思维的定位和分类提供了依据。  相似文献   

3.
独立分量分析(IndependentComponentAnalysis,ICA)是一种基于信号统计特性的盲源分离方法,由于其分离的信号之间是互相独立的,所以在生物电信号去除干扰和伪迹、信号分离以及特征提取等方面有很大的潜在价值。本文提出了一种改进的快速ICA方法,提高了收敛速度。通过仿真,证明这种方法的优越性。最后利用该方法去除脑电中眼动伪迹,达到了较好的效果。  相似文献   

4.
小波变换是近年来兴起的热门信号处理技术,是一种非常有用的信号处理工具。本文阐述了连续小波去噪和离散小波去噪的原理,分析了基于小波去噪的几种不同方法(其中包括小波分解与重构,小波变换阈值法,小波变换模极大值法,以及它与独立分量分析相结合去除噪声的方法等)。通过检测和验证,表明该方法能较好的实现心电信号的消噪,都取得了较好的效果;同时,比较了每种方法的不足和缺陷。基于小波变换心电信号消噪的研究进展较快,通过多种方法结合运用进行消噪并取得了很好的效果,展望了利用基于小波变换心电信号消噪的前景。  相似文献   

5.
脑电(electroencephalography,EEG)信号中不可避免地存在着眼动、心跳、肌电信号以及线性噪声等伪迹干扰,这些伪迹的存在极大地影响了脑电信号分析的准确性,因此在进行脑电信号分析前需要去除伪迹干扰。为了有效地去除伪迹,结合独立元分析和非线性指数分析,提出一种自动识别并去除脑电信号中伪迹分量的方法。该方法还可同时用于提取脑电信号中的基本节律如!波等。相应的模拟与实际脑电数据的实验结果表明所提议的方法具有很好的识别和去除脑电信号伪迹分量的性能。  相似文献   

6.
提出一种新的多通道脑电信号盲分离的方法,将小波变换和独立分量分析(independent component analysis,ICA)相结合,利用小波变换的滤噪作用,将混合在原始脑电的部分高频噪声滤除后,再重构原始脑电作为ICA的输入信号,有效地克服了现有ICA算法不能区分噪声的缺陷。实验结果表明,该方法对多通道脑电的盲分离是很有效的。  相似文献   

7.
肌电信号是产生肌力的生物电信号来源,反映了神经-肌肉系统在进行随意性和非随意性活动时的生物电变化情况,它与神经肌肉活动密切相关.伴随着肌电信号特征分析方法的日臻完善,蕴含在信号内的神经、肌肉信息,越来越多地被人们所掌握,并被广泛地应用于临床医学、康复医学、体育科学、医学工程学以及基础研究等诸多领域.因而肌电信号具有重要的应用价值和学术价值.现本文主要针对肌电信号的特征分析方法(时域分析、频谱分析、时频分析等方法)以及肌电信号相关领域的应用情况作以综述.  相似文献   

8.
应用小波熵分析大鼠脑电信号的动态变化特性   总被引:19,自引:0,他引:19  
应用小波熵(一种新的信号复杂度测量方法)分析大鼠在不同生理状态下脑电复杂度的动态时变特性。采用慢性埋植电极记录自由活动大鼠的皮层EEG,使用多分辨率小波变换将EEG信号分解为δ、θ、α和β四个分量,求得随时间变化的小波熵。结果表明:在清醒、慢波睡眠和快动眼睡眠三种生理状态下,EEG的小波熵之间存在显著差别,并且在不同时期其值与各个分解分量之间具有不同的关系,其中,慢波睡眠期小波熵还具有较明显的变化节律,反映了EEG微状态中慢波和纺锤波的互补性。由此可见,小波熵既能区别长时间段EEG复杂度之间的差别,又能反映EEG微状态的快速变化特性。  相似文献   

9.
脑死亡诊断是有关病人生死的重要问题.许多国家都把脑电平坦列为脑死亡诊断的基本条件,但研究发现并非所有的脑死亡患者均表现为脑电平坦,同时脑昏迷患者在部分情况下也会表现出脑电平坦的现象,从而有可能在临床中造成误判.C0复杂度判断指标能够利用脑电信号中的复杂度特性帮助临床诊断中对于脑死亡和脑昏迷状况的鉴别.运用C0复杂度算法对22位脑死亡和脑昏迷病例进行分析实验,可以发现脑死亡脑电信号的复杂度明显高于脑昏迷脑电信号的复杂度.实验表明C0复杂度可以用来有效地区分脑死亡和脑昏迷脑电信号,具有潜在的重要临床价值.  相似文献   

10.
研究脑皮不同区域之间功能协作的机制一直是认知和神经科学关注的重要问题之一。基于多变量自回归模型的动态相干性分析方法,被用于观察不同脑区在认知过程中的同步化,结果显示,人在感知和识别物体时,相关的脑区自动地发生了同步化的神经活动,这种同步化被证实是不受干扰刺激影响的,但被干扰的流产力确定影响了与判断和主动运动有关的脑区的同步化,而且这种影响的趋势与反应时间的分析结果一致。  相似文献   

11.
In this paper, EEG signals of 20 schizophrenic patients and 20 age-matched control participants are analyzed with the objective of determining the more informative channels and finally distinguishing the two groups. For each case, 22 channels of EEG were recorded. A two-stage feature selection algorithm is designed, such that, the more informative channels are first selected to enhance the discriminative information. Two methods, bidirectional search and plus-L minus-R (LRS) techniques are employed to select these informative channels. The interesting point is that most of selected channels are located in the temporal lobes (containing the limbic system) that confirm the neuro-phychological differences in these areas between the schizophrenic and normal participants. After channel selection, genetic algorithm (GA) is employed to select the best features from the selected channels. In this case, in addition to elimination of the less informative channels, the redundant and less discriminant features are also eliminated. A computationally fast algorithm with excellent classification results is obtained. Implementation of this efficient approach involves several features including autoregressive (AR) model parameters, band power, fractal dimension and wavelet energy. To test the performance of the final subset of features, classifiers including linear discriminant analysis (LDA) and support vector machine (SVM) are employed to classify the reduced feature set of the two groups. Using the bidirectional search for channel selection, a classification accuracy of 84.62% and 99.38% is obtained for LDA and SVM, respectively. Using the LRS technique for channel selection, a classification accuracy of 88.23% and 99.54% is also obtained for LDA and SVM, respectively. Finally, the results are compared and contrasted with two well-known methods namely, the single-stage feature selection (evolutionary feature selection) and principal component analysis (PCA)-based feature selection. The results show improved accuracy of classification in relatively low computational time with the two-stage feature selection.  相似文献   

12.
Symbolic dynamics is a powerful tool for studying complex dynamical systems. So far many techniques of this kind have been proposed as a means to analyze brain dynamics, but most of them are restricted to single-sensor measurements. Analyzing the dynamics in a channel-wise fashion is an invalid approach for multisite encephalographic recordings, since it ignores any pattern of coordinated activity that might emerge from the coherent activation of distinct brain areas. We suggest, here, the use of neural-gas algorithm (Martinez et al. in IEEE Trans Neural Netw 4:558–569, 1993) for encoding brain activity spatiotemporal dynamics in the form of a symbolic timeseries. A codebook of k prototypes, best representing the instantaneous multichannel data, is first designed. Each pattern of activity is then assigned to the most similar code vector. The symbolic timeseries derived in this way is mapped to a network, the topology of which encapsulates the most important phase transitions of the underlying dynamical system. Finally, global efficiency is used to characterize the obtained topology. We demonstrate the approach by applying it to EEG-data recorded from subjects while performing mental calculations. By working in a contrastive-fashion, and focusing in the phase aspects of the signals, we show that the underlying dynamics differ significantly in their symbolic representations.  相似文献   

13.
This paper deals with the problem of tele-monitoring EEG signals. In EEG tele-monitoring system, the integral step is to compress the signals in computationally efficient manner so that they can be transmitted over a limited bandwidth. In such a situation a Compressed Sensing (CS) framework for compressing and recovering the signals is the most viable approach. Previously the well known synthesis prior formulation is used for reconstruction. For the first time in this work, we show that the lesser known analysis prior formulation is a more appropriate way to frame the reconstruction problem. We show that our method yields better results than the previous synthesis prior formulation.  相似文献   

14.
 There is a growing interest in the use of physiological signals for communication and operation of devices for the severely motor disabled as well as for healthy people. A few groups around the world have developed brain-computer interfaces (BCIs) that rely upon the recognition of motor-related tasks (i.e., imagination of movements) from on-line EEG signals. In this paper we seek to find and analyze the set of relevant EEG features that best differentiate spontaneous motor-related mental tasks from each other. This study empirically demonstrates the benefits of heuristic feature selection methods for EEG-based classification of mental tasks. In particular, it is shown that the classifier performance improves for all the considered subjects with only a small proportion of features. Thus, the use of just those relevant features increases the efficiency of the brain interfaces and, most importantly, enables a greater level of adaptation of the personal BCI to the individual user. Received: 15 January 2001 / Accepted in revised form: 19 July 2001  相似文献   

15.
The majority of brain activities are performed by functionally integrating separate regions of the brain. Therefore, the synchronous operation of the brain’s multiple regions or neuronal assemblies can be represented as a network with nodes that are interconnected by links. Because of the complexity of brain interactions and their varying effects at different levels of complexity, one of the corresponding authors of this paper recently proposed the brainnetome as a new –ome to explore and integrate the brain network at different scales. Because electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive and have outstanding temporal resolution and because they are the primary clinical techniques used to capture the dynamics of neuronal connections, they lend themselves to the analysis of the neural networks comprising the brainnetome. Because of EEG/MEG’s applicability to brainnetome analyses, the aim of this review is to identify the procedures that can be used to form a network using EEG/MEG data in sensor or source space and to promote EEG/MEG network analysis for either neuroscience or clinical applications. To accomplish this aim, we show the relationship of the brainnetome to brain networks at the macroscale and provide a systematic review of network construction using EEG and MEG. Some potential applications of the EEG/MEG brainnetome are to use newly developed methods to associate the properties of a brainnetome with indices of cognition or disease conditions. Associations based on EEG/MEG brainnetome analysis may improve the comprehension of the functioning of the brain in neuroscience research or the recognition of abnormal patterns in neurological disease.  相似文献   

16.
针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。  相似文献   

17.
Han  Li  Liang  Zhang  Jiacai  Zhang  Changming  Wang  Li  Yao  Xia  Wu  Xiaojuan  Guo 《Cognitive neurodynamics》2015,9(2):103-112
A reactive brain-computer interface using electroencephalography (EEG) relies on the classification of evoked ERP responses. As the trial-to-trial variation is evitable in EEG signals, it is a challenge to capture the consistent classification features distribution. Clustering EEG trials with similar features and utilizing a specific classifier adjusted to each cluster can improve EEG classification. In this paper, instead of measuring the similarity of ERP features, the brain states during image stimuli presentation that evoked N1 responses were used to group EEG trials. The correlation between momentary phases of pre-stimulus EEG oscillations and N1 amplitudes was analyzed. The results demonstrated that the phases of time–frequency points about 5.3 Hz and 0.3 s before the stimulus onset have significant effect on the ERP classification accuracy. Our findings revealed that N1 components in ERP fluctuated with momentary phases of EEG. We also further studied the influence of pre-stimulus momentary phases on classification of N1 features. Results showed that linear classifiers demonstrated outstanding classification performance when training and testing trials have close momentary phases. Therefore, this gave us a new direction to improve EEG classification by grouping EEG trials with similar pre-stimulus phases and using each to train unit classifiers respectively.  相似文献   

18.
A novel discriminant method, termed local discriminative spatial patterns (LDSP), is proposed for movement-related potentials (MRPs)-based single-trial electroencephalogram (EEG) classification. Different from conventional discriminative spatial patterns (DSP), LDSP explicitly considers local structure of EEG trials in the construction of scatter matrices in the Fisher-like criterion. The underlying manifold structure of two-dimensional spatio-temporal EEG signals contains more discriminative information. LDSP is an extension to DSP in the sense that DSP can be formulated as a special case of LDSP. By constructing an adjacency matrix, LDSP is calculated as a generalized eigenvalue problem, and so is computationally straightforward. Experiments on MRPs-based single-trial EEG classification show the effectiveness of the proposed LDSP method.  相似文献   

19.
Electroencephalogram (EEG) is generally used in brain–computer interface (BCI), including motor imagery, mental task, steady-state evoked potentials (SSEPs) and P300. In order to complement existing motor-based control paradigms, this paper proposed a novel imagery mode: speech imagery. Chinese characters are monosyllabic and one Chinese character can express one meaning. Thus, eight Chinese subjects were required to read two Chinese characters in mind in this experiment. There were different shapes, pronunciations and meanings between two Chinese characters. Feature vectors of EEG signals were extracted by common spatial patterns (CSP), and then these vectors were classified by support vector machine (SVM). The accuracy between two characters was not superior. However, it was still effective to distinguish whether subjects were reading one character in mind, and the accuracies were between 73.65% and 95.76%. The results were better than vowel speech imagery, and they were suitable for asynchronous BCI. BCI systems will be also extended from motor imagery to combine motor imagery and speech imagery in the future.  相似文献   

20.
Electroencephalogram (EEG) signals acquired from brain can provide an effective representation of the human’s physiological and pathological states. Up to now, much work has been conducted to study and analyze the EEG signals, aiming at spying the current states or the evolution characteristics of the complex brain system. Considering the complex interactions between different structural and functional brain regions, brain network has received a lot of attention and has made great progress in brain mechanism research. In addition, characterized by autonomous, multi-layer and diversified feature extraction, deep learning has provided an effective and feasible solution for solving complex classification problems in many fields, including brain state research. Both of them show strong ability in EEG signal analysis, but the combination of these two theories to solve the difficult classification problems based on EEG signals is still in its infancy. We here review the application of these two theories in EEG signal research, mainly involving brain–computer interface, neurological disorders and cognitive analysis. Furthermore, we also develop a framework combining recurrence plots and convolutional neural network to achieve fatigue driving recognition. The results demonstrate that complex networks and deep learning can effectively implement functional complementarity for better feature extraction and classification, especially in EEG signal analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号