首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following intravenous administration of cationic lipid-DNA complexes (lipoplexes) into mice, transfection (lipofection) occurs predominantly in the lungs. This was attributed to high entrapment of lipoplexes in the extended lung vascular tree. To determine whether lipofection in other organs could be enhanced by increasing the degree of vascularization, we used a transgenic mouse model with tissue-specific angiogenesis in liver. Tail vein injection of N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP)/cholesterol lipoplexes resulted in increased lipoplex entrapment in hypervascularized liver but did not boost luciferase expression, suggesting that lipoplex delivery is not a sufficient condition for efficient organ lipofection. Because the intravenously injected lipoplexes migrated within seconds to lungs, we checked whether the effects of immediate contact with serum correlate with lung lipofection efficiency of different DOTAP-based formulations. Under conditions mimicking the injection environment, the lipoplex-serum interaction was strongly dependent on helper lipid and ionic strength: lipoplexes prepared in 150 mM NaCl or lipoplexes with high (>33 mol%) cholesterol were found to aggregate immediately. This aggregation process was irreversible and was inversely correlated with the percentage of lung cells that took up lipoplexes and with the efficiency of lipofection. No other structural changes in serum were observed for cholesterol-based lipoplexes. Dioleoyl phosphatidylethanolamine-based lipoplexes were found to give low expression, apparently because of an immediate loss of integrity in serum, without lipid-DNA dissociation. Our study suggests that efficient in vivo lipofection is the result of cross-talk between lipoplex composition, interaction with serum, hemodynamics, and target tissue "susceptibility" to transfection.  相似文献   

2.
In this work, we have successfully prepared a series of new sterol-based cationic lipids (14) via an efficient ‘Click’ chemistry approach. The pDNA binding affinity of these lipids was examined by EB displacement and agarose-gel retardant assay. The average particle sizes and surface charges of the sterol-based cationic lipids/pDNA lipoplexes were analyzed by dynamic laser light scattering instrument (DLS), and the morphologies of the lipoplexes were observed by atomic force microscopy (AFM). The cytotoxicity of the lipids were examined by MTT and LDH assay, and the gene transfection efficiencies of these lipid carriers were investigated by luciferase gene transfection assay in various cell lines. In addition, the intracellular uptake and trafficking/localization behavior of the Cy3-DNA loaded lipoplexes were preliminarily studied by fluorescence microscopy. The results demonstrated that the pDNA loading capacity, lipoplex particle size, zeta potential and morphology of the sterol lipids/pDNA lipoplexes depended largely on the molecular structure factors including sterol-skeletons and headgroups. Furthermore, the sterol-based lipids showed quite different cytotoxicity and gene transfection efficacy in A549 and HeLa cells. Interestingly, it was found that the cholesterol-bearing lipids 1 and 2 showed 7–104 times higher transfection capability than their lithocholate-bearing counterparts 3 and 4 in A549 and HeLa cell lines, suggested that the gene transfection capacity strongly relied on the structure of sterol skeletons. Moreover, the study on the structure–activity relationships of these sterol-based cationic lipid gene carriers provided a possible approach for developing low cytotoxic and high efficient lipid gene carriers by selecting suitable sterol hydrophobes and cationic headgroups.  相似文献   

3.
Using a group of structurally related cytofectins, the effects of different vehicle constituents and mixing techniques on the physical properties and biological activity of lipoplexes were systematically examined. Physical properties were examined using a combination of dye accessibility assays, centrifugation, gel electrophoresis and dynamic light scattering. Biological activity was examined using in vitro transfection. Lipoplexes were formulated using two injection vehicles commonly used for in vivo delivery (PBS pH 7.2 and 0.9% saline), and a sodium phosphate vehicle previously shown to enhance the biological activity of naked pDNA and lipoplex formulations. Phosphate was found to be unique in its effect on lipoplexes. Specifically, the accessible pDNA in lipoplexes formulated with cytofectins containing a gamma-amine substitution in the headgroup was dependent on alkyl side chain length and sodium phosphate concentration, but the same effects were not observed when using cytofectins containing a beta-OH headgroup substitution. The physicochemical features of the phosphate anion, which give rise to this effect in gamma-amine cytofectins, were deduced using a series of phosphate analogs. The effects of the formulation vehicle on transfection were found to be cell type-dependent; however, of the formulation variables examined, the liposome/pDNA mixing method had the greatest effect on transgene expression in vitro. Thus, though predictive physical structure relationships involving the vehicle and cytofectin components of the lipoplex were uncovered, they did not extrapolate to trends in biological activity.  相似文献   

4.
DNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection. Lipoplexes composed of pDNA and dioctadecyldimethylammonium bromide (DODAB)/1-monooleoyl-rac-glycerol (MO) at different molar ratios (4:1, 2:1 and 1:1) and at different cationic lipid/DNA ratios were investigated. The physicochemical properties of the lipoplexes (size, charge and structure), were studied by Dynamic Light Scattering (DLS), Zeta Potential (ζ) and cryo-transmission electron microscopy (cryo-TEM). The effect of MO on pDNA condensation and the effect of heparin and heparan sulphate on the percentage of pDNA release from the lipoplexes were also studied by Ethidium Bromide (EtBr) exclusion assays and electrophoresis. Cytotoxicity and transfection efficiency of these lipoplexes were evaluated using 293T cells and compared with the golden standard helper lipids 1,2-dioleoyl-sn-glycero-3-hosphoethanolamine (DOPE) and cholesterol (Chol) as well as with a commercial transfection agent (Lipofectamine? LTX). The internalization of transfected fluorescently-labeled pDNA was also visualized using the same cell line. The results demonstrate that the presence of MO not only increases pDNA compactation efficiency, but also affects the physicochemical properties of the lipoplexes, which can interfere with lipoplex-cell interactions. The DODAB:MO formulations tested showed little toxicity and successfully mediated in vitro cell transfection. These results were supported by fluorescence microscopy studies, which illustrated that lipoplexes were able to access the cytosol and deliver pDNA to the nucleus. DODAB:MO-based lipoplexes were thus validated as non-toxic, efficient lipofection vectors for genetic modification of mammalian cells. Understanding the relation between structure and activity of MO-based lipoplexes will further strengthen the development of these novel delivery systems.  相似文献   

5.
To evaluate the role of lipid charge density in the serum stability of DOTAP-Chol/DNA complexes (lipoplexes), lipid-DNA interactions, extent of aggregation, supercoil content, and in vitro transfection efficiency of lipoplexes were investigated. In general, higher serum concentration destabilized, and increasing molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP(+)/DNA(-)) stabilized lipoplexes in serum as assessed by the criteria used in this study. The increase of cholesterol content led to increased serum stability, and DOTAP:Chol (mol/mol 1:4)/DNA lipoplex with DOTAP(+)/DNA(-) ratio 4 was the most serum stable formulation of all the formulations examined, and maintained lipid-DNA interactions, did not aggregate and exhibited high in vitro transfection efficiency in 50% (v/v) serum. The increased stability of this formulation could not be explained by the decreased charge density of the lipid component. Furthermore, no single parameter examined in the study could be used to consistently predict the in vitro transfection efficiency of lipoplexes in serum. Surprisingly, no correlation between the maintenance of supercoiled DNA content and in vitro transfection efficiency was found in the study.  相似文献   

6.
Cationic liposomes-DNA complexes (lipoplexes) are largely used in gene delivery. Deciphering specific chemical and physical properties of lipoplexes is a necessary step to unravel the mechanisms underlying transfection and to improve transfection efficacy in each experimental model. In the present paper we investigated the physico-chemical features of lipoplexes containing a plasmid encoding for the GFP protein, in order to correlate these results with transfection efficacy. Cationic unilamellar vesicles (mean diameter 100 nm) were prepared, from the cationic DC-Chol lipid and the zwitterionic phospholipid DOPE. The two components of the liposome bilayer were used at molar ratio close to unity. ESR spectra were recorded and zeta potential zeta was measured on liposomes complexed with the plasmid. One of the main points of interest in this paper resided in the fact that both kinds of measurements were carried out in the same conditions (i.e. lipid concentration, medium composition, and pH) employed for cell transfection experiments. Transfection was performed on CHO cells; the percentage of fluorescent cells was evaluated and compared with the above physico-chemical features. It emerged that the composition and pH of the medium, the lipoplex/cell ratio, as well as the amount of lipoplex added to the cell culture were critical parameters for transfection efficacy. Finally, lipoplex surface charge played a fundamental role to achieve a high transfection level.  相似文献   

7.
The large number of cytofectin and co-lipid combinations currently used for lipoplex-mediated gene delivery reflects the fact that the optimal cytofectin/co-lipid combination varies with the application. The effects of structural changes in both cytofectin and co-lipid were systematically examined to identify structure–activity relationships. Specifically, alkyl chain length, degree of unsaturation and the head group to which the alkyl side chain was attached were examined to determine their effect on lipoplex structure and biological activity. The macroscopic lipoplex structure was assessed using a dye-binding assay and the biological activity was examined using in vitro transfection in three diverse cell lines. Lipoplexes were formulated in three different vehicles currently in use for in vivo delivery of naked plasmid DNA (pDNA) and lipoplex formulations. The changes in dye accessibility were consistent with structural changes in the lipoplex, which correlated with alterations in the formulation. In contrast, transfection activity of different lipoplexes was cell type and vehicle dependent and did not correlate with dye accessibility. Overall, the results show a correlation between transfection and enhanced membrane fluidity in both the lipoplex and cellular membranes.  相似文献   

8.
Y Xu  S W Hui  P Frederik    F C Szoka  Jr 《Biophysical journal》1999,77(1):341-353
Cationic lipid-nucleic acid complexes (lipoplexes) consisting of dioleoyltrimethylammoniumpropane (DOTAP) liposomes and plasmid DNA were prepared at various charge ratios (cationic group to nucleotide phosphate), and the excess component was separated from the lipoplex. We measured the stoichiometry of the lipoplex, noted its colloidal properties, and observed its morphology and structure by electron microscopy. The colloidal properties of the lipoplexes were principally determined by the cationic lipid/DNA charge ratio and were independent of the lipid composition. In lipoplexes, the lipid membranes as observed in freeze-fracture electron microscopy were deformed into high-radius-of-curvature features whose characteristics depended on the lipid composition. Lipoplexes prepared at a threefold or greater excess of either DOTAP or DNA could be resolved into complexes with a defined stoichiometry and the excess component by sedimentation to equilibrium on sucrose gradients. The separated, positively charged complex retained high transfection activity and had reduced toxicity. The negatively charged lipoplex showed increased transfection activity compared to the starting mixture. In cryoelectron micrographs the positively charged complex was spherical and contained a condensed but indistinct interior structure. In contrast, the separated negatively charged lipoplexes had a prominent internal 5.9 +/- 0.1-nm periodic feature with material projecting as spikes from the spherical structure into the solution. It is likely that these two lipoplexes represent structures with different lipid and DNA packing.  相似文献   

9.
Transfection efficiency of liposomal gene delivery vectors depends on an optimal balance in the electro-chemical and structural properties of the transfection-capable complexes. We have recently reported a novel anionic lipoplex DNA delivery system composed of a ternary complex of endogenous occurring non-toxic anionic lipids, physiological Ca2+ cations, and plasmid DNA encoding a gene of interest with high transfection efficiency and low toxicity. In this work, we investigate the electro-chemical and structural properties anionic lipoplexes and compare them with those of Ca2+-DNA complexes. Biophysical characterization is used to explain the transfection efficiency of anionic lipoplexes in mammalian CHO-K1 cells. Circular dichroism and fluorescence spectroscopy showed that the plasmid DNA underwent conformational transition from native B-DNA to Z-DNA due to compaction and condensation upon Ca2+-mediated complexation with anionic liposomes. Zeta potential measurements and gel electrophoresis studies demonstrated that Ca2+ interaction with plasmid DNA during the formation of lipoplexes also led to increased association of supercoiled plasmid DNA with the lipoplexes, leading to charge neutralization which is expected to facilitate transfection. However, even 10-fold higher concentrations of Ca2+ alone (in the absence of the anionic liposomes) were unable to induce these changes in plasmid DNA molecules. A model explaining the possible mechanism of anionic lipoplex formation and the correlation of high transfection efficiency to biophysical properties was proposed. These studies confirm the utility of biophysical studies to identify optimal formulation conditions to design efficient liposomal gene delivery vectors.  相似文献   

10.
Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.  相似文献   

11.
We have investigated the mechanism of lipoplex-mediated transfection, employing a dialkyl pyridinium surfactant (SAINT-2), and using serum as a modulator of complex stability and processing. Particle size and stability determine lipoplex internalization, the kinetics of intracellular processing, and transfection efficiency. Clustered SAINT-2 lipoplexes are obtained in the absence of serum (-FBS lipoplexes), but not in its presence (+FBS lipoplexes), or when serum was present during lipoplex formation [FBS], conditions that mimic potential penetration of serum proteins. The topology of DNA in [FBS] lipoplexes shifts from a supercoiled, as in -FBS lipoplexes, to a predominantly open-circular conformation, and is more prone to digestion by DNase. Consistently, atomic force microscopy revealed complexes with tubular extensions, reflecting DNA that protrudes from the lipoplex surface. Interestingly, the internalization of [FBS] lipoplexes is approximately three-fold higher than that of -FBS and +FBS lipoplexes, yet their transfection efficiency is approximately five-fold lower. Moreover, in contrast to -FBS and +FBS complexes, [FBS] complexes were rapidly processed into the late endosomal/lysosomal degradation pathway. Intriguingly, transfection by [FBS] complexes is greatly improved by osmotic rupture of endocytic compartments. Our data imply that constraints in size and morphology govern the complex' ability to interact with and perturb cellular membranes, required for gene release. By extrapolation, we propose that serum may regulate these parameters in an amphiphile-dependent manner, by complex 'penetration' and modulation of DNA conformation.  相似文献   

12.
Abstract

Multilamellar vesicles (MLVs) containing the cationic lipid DOTAP were used as vectors to lipofect a number of culture cell lines in the presence of serum. The lipofection efficiency of lipoplexes made of MLVs and the plasmid pSV-β galactosidase are much less sensitive to the lipofection-inhibitory effect of serum than the conventionally used lipoplexes made of sonicated small unilamellar vesicles (SUVs). In order to determine the factors favoring the lipofection efficiency of MLVs, we measured the size, as well as the cellular association and uptake of MLV and SUV lipoplexes containing DOTAP alone or DOTAP:DOPE (1:1). Electron microscope images of these complexes were taken to confirm their structure and size. The single most important factor that correlates with transfection efficiency in serum is the size of the lipoplex. SUV lipoplexes remain smaller than 300 nm in the presence of serum, and the lipofection efficiencies are low. MLV lipoplexes are larger (>300 nm) and the lipofection efficiency, as well as cellular association and uptake, are much higher than those of SUV lipoplexes. Exceptions are those lipoplexes made of MLVs of DOTAP and DOPE (1:1) combined with DNA at higher charge ratios, which form hexagonal structures and show poor lipofection as well as cellular association and uptake, even if their lipoplex size exceeds 300 nm. This finding lends credence to our theory of the serum inhibition effect upon lipofection, and suggests ways to improve the transfection efficiency in the presence of serum, by fabricating lipoplexes of defined sizes.  相似文献   

13.
The influence of PEGylation on polyplex stability from poly(ethylene imine), PEI, and plasmid DNA was investigated both in vitro and after intravenous administration in mice. Polyplexes were characterized with respect to particle size (dynamic light scattering), zeta-potential (laser Doppler anemometry), and morphology (atomic force microscopy). Pharmacokinetics and organ accumulation of both polymers and pDNA were investigated using 125I and 32P radioactive labels, respectively. Furthermore gene expression patterns after 48 h were measured in mice. To elucidate the effect of different doses, all experiments were performed using ca. 1.5 microg and 25 microg of pDNA per mouse. Our studies demonstrated that both PEI and PEG-PEI form stable polyplexes with DNA with similar sizes of 100-130 nm. The zeta potential of PEI/pDNA polyplexes was highly positive, whereas PEG-PEI/pDNA showed a neutral surface charge as expected. The pharmacokinetic and organ distribution profiles after 2 h show similarities for both PEI and pDNA blood-level time curves from polyplexes at both doses indicative for significant stability in the bloodstream. A very rapid clearance from the bloodstream was observed and as major organs of accumulation liver and spleen were identified. PEG-PEI/pDNA complexes at a dose of approximately 25 microg exhibit similar profiles except a significantly lower deposition in the lung. At the lower dose of approximately 1.5 microg pDNA, however, for polyplexes from PEG-PEI, significant differences in blood level curves and organ accumulation of polymer and pDNA were found. In this case PEG-PEI shows a greatly enhanced circulation time in the bloodstream. By contrast, pDNA was rapidly cleared from circulation and significant amounts of radioactivity were found in the urine, suggesting a rapid degradation possibly by serum nucleases after complex separation. Regarding in vivo gene expression, no luciferase expression could be detected at approximately 1.5 microg dose in any organ using both types of complexes. At 25 microg only in the case of PEI/pDNA complexes were significant levels of the reporter gene detected in lung, liver, and spleen. This coincided with high initial accumulation of pDNA complexed with PEI and a high acute in vivo toxicity. For PEG-PEI, initial accumulation was much lower and no gene expression as well as a low acute toxicity was found. In summary, our data demonstrate that PEG-PEI used in this study is not suitable for low dose gene delivery. At a higher dose of approximately 25 microg, however, polyplex stability is similar to PEI/pDNA combined with a more favorable organ deposition and significantly lower acute in vivo toxicity. These findings have consequences for the design of PEG-PEI-based gene delivery systems for in vivo application.  相似文献   

14.
The objectives of this study were to test the influence of different parameters on the in vivo cationic lipid mediated gene transfer in lung after intravenous administration. Luciferase activity was evaluated in lung tissue 24 hours after intravenous administration of different types of lipoplexes. These included lipoplexes prepared using cationic phosphonolipids or DOTAP and various amounts of plasmid DNA. Using two different plasmids we tested the influence of plasmid size on transfection efficiency in vivo. In a last series of experiments, lipoplexes were prepared using different excipients (water, NaCl or 5% glucose solution) and three injection volumes were tested. We demonstrate that chemical structure modifications such as cation substitution and increment of the aliphatic chain length significantly improve transfection efficiency. High luciferase levels are obtained by increasing lipid to DNA charge ratio and plasmid DNA dose and decreasing plasmid size. Lipoplexes prepared in physiological NaCl solution and injected using a volume of 800μl are significantly the most effective.

Cationic lipid mediated gene transfer in lung tissue after intravenous administration is influenced by factors including cationic lipid chemical structure, lipid to DNA ratio and plasmid dose. Nevertheless, plasmid size, injection volume and the excipient, used for the lipoplexes preparation, are also important factors and must be considered for an optimization of in vivo gene delivery using intravenous administration.  相似文献   

15.
In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.  相似文献   

16.
There is a need for the development of nonviral gene transfer systems with improved and original properties. "Fluorinated" lipoplexes are such candidates, as supported by the remarkably higher in vitro and in vivo transfection potency found for such fluorinated lipoplexes as compared with conventional ones or even with PEI-based polyplexes (Boussif, O., Gaucheron, J., Boulanger, C., Santaella, C., Kolbe, H. V. J., Vierling, P. (2001) Enhanced in vitro and in vivo cationic lipid-mediated gene delivery with a fluorinated glycerophosphoethanolamine helper lipid. J. Gene Med. 3, 109-114). Here, we describe the synthesis of fluorinated glycerophosphoethanolamines (F-PEs), close analogues of dioleoylphosphatidylethanolamine (DOPE), and report on their lipid helper properties vs that of DOPE, as in vitro gene transfer components of fluorinated lipoplexes based on pcTG90, DOGS (Transfectam), or DOTAP. To evaluate the contribution of the F-PEs to in vitro lipoplex-mediated gene transfer, we examined the effect of including the F-PEs in lipoplexes formulated with these cationic lipids (CL) for various CL:DOPE:F-PE molar ratios [1:(1 - x):x with x = 0, 0.5 and 1; 1:(2 - y):y with y = 0, 1, 1.5, and 2], and various N/P ratios (from 10 to 0.8, N = number of CL amines, P = number of DNA phosphates). Irrespective of the F-PE chemical structure, of the colipid F-PE:DOPE composition, and of the N/P ratio, comparable transfection levels to those of their respective control DOPE lipoplexes were most frequently obtained when using one of the F-PEs as colipid of DOGS, pcTG90, or DOTAP in place of part of or of all DOPE. However, a large proportion of DOGS-based lipoplexes were found to display a higher transfection efficiency when formulated with the F-PEs rather than with DOPE alone while the opposite tendency was evidenced for the DOTAP-based lipoplexes. The present work indicates that "fluorinated" lipoplexes formulated with fluorinated helper lipids and conventional cationic lipids are very attractive candidates for gene delivery. It confirms further that lipophobicity and restricted miscibility of the lipoplex lipids with the endogenous lipids does not preclude efficient gene transfer and expression. Their transfection potency is rather attributable to their unique lipophobic and hydrophobic character (resulting from the formulation of DNA with fluorinated lipids), thus preventing to some extent DNA from interactions with lipophilic and hydrophilic biocompounds, and from degradation.  相似文献   

17.
Cationic liposomes have long been used as non-viral vectors for small interfering RNA (siRNA) delivery but are associated with high toxicity, less transfection efficiency, and in vivo instability. In this investigation, we have developed siRNA targeted to RRM1 that is responsible for development of resistance to gemcitabine in cancer cells. Effect of different lipid compositions has been evaluated on formation of stable and less toxic lipoplexes. Optimized cationic lipoplex (D2CH) system was comprised of dioleoyl-trimethylammoniumpropane (DOTAP), dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), hydrogenated soya phosphocholine (HSPC), cholesterol, and methoxy(polyethyleneglycol)2000–1,2-distearoyl-sn-glycero-3-phosphoethanolamine (mPEG2000–DSPE). D2CH lipoplexes have shown particle size (147.5 ± 2.89 nm) and zeta potential (12.26 ± 0.54 mV) characteristics essential for their in vivo use. In vitro cytotoxicity study has shown low toxicity of developed lipoplexes as compared with lipofectamine-2000 up to N/P ratio as high as 7.5. Cell uptake studies and gene expression studies have confirmed intracellular availability of siRNA. In addition, developed lipoplexes also showed ~3 times less hemolytic potential as compared with DOTAP/DOPE lipoplexes at lipid concentration of 5 mg/mL. Lipoplexes also maintained particle size less than 200 nm on exposure to high electrolyte concentration and showed >70% siRNA retention in presence of serum showing siRNA protection conferred by lipoplexes. Furthermore, in vivo acute toxicity studies in mice showed that formulation was non-toxic up to a dosage of 0.75 mg of siRNA/kg as lipoplexes and 300 mg lipid/kg as blank liposomes indicating tolerability of lipoplexes at a dose much higher than required for therapeutic use. Promising results of this study warrant further investigation of developed siRNA lipoplexes for cancer treatment.KEY WORDS: cancer, gene expression, lipoplex, siRNA, toxicity  相似文献   

18.
It has been previously shown that transfection activity of cationic liposome/DNA lipoplexes delivered systemically is drastically inhibited by lipoproteins (Tandia, B. M., Vandenbranden, M., Wattiez, R., Lakhdar, Z., Ruysschaert, J. M., and Elouahabi, A. (2003) Mol Ther. 8, 264-273). In this work, we have compared the binding/uptake and transfection activities of DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride) and diC14-amidine (3-tetradecylamino-N-tert-butyl-N'-tetra-decylpropionamidine)-containing lipoplexes in the presence or absence of purified low density lipoproteins and high density lipoprotein. Binding/uptake of both lipoplexes by the mouse lung endothelial cell line was inhibited to a similar extent in the presence of lipoproteins. In contrast, transfection activity of diC14-amidine-containing lipoplexes was almost completely inhibited (approximately by 95%), whereas approximately 40% transfection activity of DOTAP-containing lipoplexes was preserved in the presence of lipoproteins. Interestingly, the ability of lipoproteins to inhibit the transfection efficiency of lipoplexes was well correlated with their ability to undergo lipid mixing with the cationic lipid bilayer as revealed by fluorescence resonance energy transfer assay. Incubation of lipoplexes with increased doses of lipoproteins resulted in enhanced lipid mixing and reduced transfection activity of the lipoplexes in mouse lung endothelial cells. The role of lipid mixing in transfection was further demonstrated using lipid-mixing inhibitor, lyso-phosphatidylcholine, or activator (dioleoylphosphatidylethanolamine). Incorporation of Lyso-PC into diC14-amidine-containing lipoplexes completely abolished their capacity to undergo lipid mixing with lipoproteins and allowed them to reach a high transfection efficiency in the presence of lipoproteins. On the other hand, the incorporation of dioleoylphosphatidylethanolamine into DOTAP/DNA lipoplex activated lipid mixing with the lipoproteins and was shown to be detrimental toward the transfection activity of these lipoplexes. Taken together, these results indicate that fusion of lipoplexes with lipoproteins is a limiting factor for in vivo transfection.  相似文献   

19.
BACKGROUND: Gene transfer to burn wounds could present an alternative to conventional and often insufficient topical and systemic application of therapeutic agents to aid in wound healing. The goals of this study were to assess and optimize the potential of transient non-viral gene delivery to burn wounds. METHODS: HaCaT cells were transfected with luciferase or beta-galactosidase transgene using either pure plasmid DNA (pDNA) or complexed with Lipofectamine 2000, FuGENE6, or DOTAP-Chol. Expression was determined by bioluminescence and fluorescence. Forty male Sprague-Dawley rats received naked pDNA, lipoplexes, or carrier control intradermally into either unburned skin, superficial, partial, or full-thickness scald burn. Animals were sacrificed after 24 h, 48 h, or 7 days, and transgene expression was assessed. RESULTS: Gene transfer to HaCaT cells showed the overall highest expression for DOTAP/Chol (77.85 ng luciferase/mg protein), followed by Lipofectamine 2000 (33.14 ng luciferase/mg protein). pDNA-derived gene transfer to superficial burn wounds showed the highest expression among burn groups (0.77 ng luciferase/mg protein). However, lipoplex-derived gene transfer to superficial burns and unburned skin failed to show higher expression. CONCLUSIONS: Lipofectamine 2000 and DOTAP/Chol lipoplex showed significantly enhanced gene transfer, whereas no transfection was detectable for naked DNA in vitro. In contrast to the in vitro study, naked DNA was the only agent with which gene delivery was successful in experimental burn wounds. These findings highlight the limited predictability of in vitro analysis for gene delivery as a therapeutic approach.  相似文献   

20.
BACKGROUND: All-trans retinoic acid (ATRA) is a natural derivative of vitamin A, which is well known to suppress inflammatory cytokine production. To date, there have been few reports about the systemic use of ATRA for inflammation because of acute resistance and the highly lipophilic nature of ATRA. METHODS: ATRA-lipoplexes were prepared by mixing CMV-Luc plasmid DNA with ATRA-incorporated 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP)/cholesterol liposome. After intravenous injection, tissue accumulation, transfection efficacy, NFkappaB activation, cytokine production, and hepatic toxicity of ATRA-lipoplexes were evaluated and compared with lipoplexes lacking ATRA. RESULTS: The particle size and zeta potential of ATRA-lipoplexes were similar to those of lipoplexes. After intravenous injection of ATRA-lipoplexes, tissue accumulation in liver and gene expression in liver and lung were similar to those of lipoplexes, supporting the hypothesis that ATRA incorporation did not affect the delivery and gene transfection efficacy. In addition, ATRA incorporated in ATRA-lipoplexes was delivered to liver in a manner similar to that for ATRA incorporated in liposomes. In addition, intravenous injection of ATRA-lipoplexes inhibited the activation of NFkappaB in liver, and subsequently suppressed the serum levels of tumor necrosis factor-alpha (TNF-alpha) and alanine aminotransferase (ALT) compared with lipoplexes. Liver histology data also demonstrated a low degree of liver injury produced by ATRA-lipoplexes compared with lipoplexes. CONCLUSIONS: ATRA-incorporated lipoplexes effectively suppress NFkappaB activation, cytokine response and liver injury induced by lipoplexes without affecting gene delivery and transfection efficacy in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号