首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Oxidative stress and heart failure   总被引:3,自引:0,他引:3  
Various abnormalities have been implicated in the transition of hypertrophy to heart failure but the exact mechanism is still unknown. Thus heart failure subsequent to hypertrophy remains a major clinical problem. Recently, oxidative stress has been suggested to play a critical role in the pathogenesis of heart failure. Here we describe antioxidant changes as well as their significance during hypertrophy and heart failure stages. Heart hypertrophy in rats and guinea pigs, in response to pressure over-load, is associated with an increase in antioxidant reserve and a decrease in oxidative stress. Hypertrophied rat hearts show increased tolerance for different oxidative stress conditions such as those imposed by free radicals, hypoxia-reoxygenation and ischemia-reperfusion. On the other hand, heart failure under acute as well as chronic conditions is associated with reduced antioxidant reserve and increased oxidative stress. The latter may have a causal role as suggested by the protection seen with antioxidant treatment in acute as well as in chronic heart failure. It is becoming increasingly apparent that, anytime the available antioxidant reserve in the cell becomes inadequate, myocardial dysfunction is imminent.  相似文献   

2.
3.
The suggested role of oxidative stress in the pathogenesis of heart failure is largely based on utilizing left heart failure models. The present study on rats evaluated changes in antioxidants as well as oxidative stress in relation to hemodynamic function subsequent to the right heart failure induced by monocrotaline (50 mg/kg, i.p.). During the post-injection period, monocrotaline (MCT)-treated rats demonstrated a persistent growth depression. Two to three weeks after the injection, MCT-treated rats showed signs of fatigue, peripheral cyanosis and dyspnea. In these rats, right heart hypertrophy was confirmed by a significant increase in right ventricular weight as well as right ventricle to body weight ratio. In MCT-treated rats, there was also a significant increase in right ventricular systolic as well as end diastolic pressures. No change in lung and liver wet/dry weight ratios between MCT-treated and control animals was observed. Based on the hemodynamic data as well as other clinical observations, the functional stage achieved was compensated heart failure. Myocardial antioxidant enzymes, catalase, glutathione peroxidase and superoxide dismutase, in the MCT-treated rats were not different compared to control rats. Vitamin E levels were significantly depressed in the RV and there was no change in retinol levels. There was a significant increase in lipid hydroperoxide concentrations in MCT-treated rats as compared to the control group. These data provide evidence that right heart failure is associated with an increase in oxidative stress.  相似文献   

4.
Changes in oxidative stress and apoptotic process were studied during the progression of a compensated hypertrophy to a decompensated heart failure in guinea pigs. Banding of the ascending aorta resulted in heart hypertrophy. At 10 wk, ventricle-to-body weight ratio and thickness of the interventricular septum as well as the left ventricular wall were increased significantly. Although fractional shortening and ejection fraction were decreased, there were no signs of heart failure. Furthermore, there was no increase in wet-to-dry weight ratios for the lungs and liver at this stage. However, at 20 wk, heart failure was characterized by a significant depression in heart function as indicated by a decrease in fractional shortening, and ejection fraction and a lesser increase in wall thickness from diastole to systole. Animals also showed clinical signs of heart failure, and the wet-to-dry weight ratios of the lungs and liver were significantly higher. Cardiomyocyte oxidative stress was significantly higher in the 20-wk aortic-banded group. The ratio of Bax to Bcl-xl showed an increase at 10 wk, and there was a further increase at 20 wk. Mitochondrial membrane potential in the aortic-banded animals was significantly decreased at 10 and 20 wk. Cytochrome c levels were higher in the cytosol compared with the mitochondria, leading to a considerable increase in the expression of p17 subunit of caspase-3. At 20 wk, both early and late stages of apoptosis were observed in isolated cardiomyocytes. It is suggested that an increase in oxidative stress initiates mitochondrial death pathway during the hypertrophic stage, leading to apoptosis and heart failure at a later stage.  相似文献   

5.
Oxidative stress causes mitochondrial dysfunction and heart failure through unknown mechanisms. Cardiolipin (CL), a mitochondrial membrane phospholipid required for oxidative phosphorylation, plays a pivotal role in cardiac function. The onset of age-related heart diseases is characterized by aberrant CL acyl composition that is highly sensitive to oxidative damage, leading to CL peroxidation and mitochondrial dysfunction. Here we report a key role of ALCAT1, a lysocardiolipin acyltransferase that catalyzes the synthesis of CL with a high peroxidation index, in mitochondrial dysfunction associated with hypertrophic cardiomyopathy. We show that ALCAT1 expression was potently upregulated by the onset of hyperthyroid cardiomyopathy, leading to oxidative stress and mitochondrial dysfunction. Accordingly, overexpression of ALCAT1 in H9c2 cardiac cells caused severe oxidative stress, lipid peroxidation, and mitochondrial DNA (mtDNA) depletion. Conversely, ablation of ALCAT1 prevented the onset of T4-induced cardiomyopathy and cardiac dysfunction. ALCAT1 deficiency also mitigated oxidative stress, insulin resistance, and mitochondrial dysfunction by improving mitochondrial quality control through upregulation of PINK1, a mitochondrial GTPase required for mitochondrial autophagy. Together, these findings implicate a key role of ALCAT1 as the missing link between oxidative stress and mitochondrial dysfunction in the etiology of age-related heart diseases.  相似文献   

6.
为探究氧化应激相关基因在心力衰竭发生发展中的作用,并发现核心基因进行靶基因药物预测。从GEO数据库下载GSE120895基因表达图谱,通过GEO2R筛选差异表达基因,将差异表达基因与GeneCard数据库中筛选的氧化应激相关基因取交集,得到心力衰竭氧化应激相关差异表达基因,利用R软件对差异表达基因进行GO及KEGG分析,利用Cytoscape进行PPI网络的模块以及关键基因的筛选。之后在GSE17800基因表达图谱中验证关键基因的表达,并针对关键基因进行相互作用药物预测。差异表达基因与氧化应激相关基因取交集后,共筛选出52个上调的氧化应激相关差异表达基因,在此基础上,筛选出ACTB,STAT3,FN1,EDN1,CAT共5个关键基因,在GSE17800基因表达图谱中验证后,针对4个关键基因预测了19个靶基因潜在药物。总之,本研究通过生物信息学方法鉴定关键基因,并预测潜在治疗药物,从而为了解心力衰竭的分子机制及其诊治方法提供新的见解。  相似文献   

7.
心力衰竭的发生发展涉及多条生理病理通路,选择不同通路中的多个生物标记物能够提高对心力衰竭风险评估的准确性。总结了心 力衰竭发生发展过程中与心肌损伤、内皮功能障碍、神经激素紊乱、炎症反应、氧化应激过程相关的生物标记物,基于多标记物评价方法 的数学模型及多标记物法在心力衰竭和药物心脏毒性风险评估中的应用。  相似文献   

8.
Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) (30). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.  相似文献   

9.

Background

Cardiac oxidative stress, bioenergetics and catecholamine play major roles in heart failure progression. However, the relationships between these three dominant heart failure factors are not fully elucidated. Caffeic acid ethanolamide (CAEA), a synthesized derivative from caffeic acid that exerted antioxidative properties, was thus applied in this study to explore its effects on the pathogenesis of heart failure.

Results

In vitro studies in HL-1 cells exposed to isoproterenol showed an increase in cellular and mitochondria oxidative stress. Two-week isoproterenol injections into mice resulted in ventricular hypertrophy, myocardial fibrosis, elevated lipid peroxidation, cardiac adenosine triphosphate and left ventricular ejection fraction decline, suggesting oxidative stress and bioenergetics changes in catecholamine-induced heart failure. CAEA restored oxygen consumption rates and adenosine triphosphate contents. In addition, CAEA alleviated isoproterenol-induced cardiac remodeling, cardiac oxidative stress, cardiac bioenergetics and function insufficiency in mice. CAEA treatment recovered sirtuin 1 and sirtuin 3 activity, and attenuated the changes of proteins, including manganese superoxide dismutase and hypoxia-inducible factor 1-α, which are the most likely mechanisms responsible for the alleviation of isoproterenol-caused cardiac injury

Conclusion

CAEA prevents catecholamine-induced cardiac damage and is therefore a possible new therapeutic approach for preventing heart failure progression.  相似文献   

10.
Oxidative stress plays a pivotal role in chronic heart failure. SIRT1, an NAD+-dependent histone/protein deacetylase, promotes cell survival under oxidative stress when it is expressed in the nucleus. However, adult cardiomyocytes predominantly express SIRT1 in the cytoplasm, and its function has not been elucidated. The purpose of this study was to investigate the functional role of SIRT1 in the heart and the potential use of SIRT1 in therapy for heart failure. We investigated the subcellular localization of SIRT1 in cardiomyocytes and its impact on cell survival. SIRT1 accumulated in the nucleus of cardiomyocytes in the failing hearts of TO-2 hamsters, postmyocardial infarction rats, and a dilated cardiomyopathy patient but not in control healthy hearts. Nuclear but not cytoplasmic SIRT1-induced manganese superoxide dismutase (Mn-SOD), which was further enhanced by resveratrol, and increased the resistance of C2C12 myoblasts to oxidative stress. Resveratrol''s enhancement of Mn-SOD levels depended on the level of nuclear SIRT1, and it suppressed the cell death induced by antimycin A or angiotensin II. The cell-protective effects of nuclear SIRT1 or resveratrol were canceled by the Mn-SOD small interfering RNA or SIRT1 small interfering RNA. The oral administration of resveratrol to TO-2 hamsters increased Mn-SOD levels in cardiomyocytes, suppressed fibrosis, preserved cardiac function, and significantly improved survival. Thus, Mn-SOD induced by resveratrol via nuclear SIRT1 reduced oxidative stress and participated in cardiomyocyte protection. SIRT1 activators such as resveratrol could be novel therapeutic tools for the treatment of chronic heart failure.  相似文献   

11.
Sirt1 protects the heart from aging and stress   总被引:2,自引:0,他引:2  
The prevalence of heart diseases, such as coronary artery disease and congestive heart failure, increases with age. Optimal therapeutic interventions that antagonize aging may reduce the occurrence and mortality of adult heart diseases. We discuss here how molecular mechanisms mediating life span extension affect aging of the heart and its resistance to pathological insults. In particular, we review our recent findings obtained from transgenic mice with cardiac-specific overexpression of Sirt1, which demonstrated delayed aging and protection against oxidative stress in the heart. We propose that activation of known longevity mechanisms in the heart may represent a novel cardioprotection strategy against aging and certain types of cardiac stress, such as oxidative stress.  相似文献   

12.
Oxidative stress contributes to the pathogenesis of aging-associated heart failure. Among various signaling pathways mediating oxidative stress, the NAD(+) -dependent protein deacetylase SirT1 has been implicated in the protection of heart muscle. Expression of a locally acting insulin-like growth factor-1 (IGF-1) propeptide (mIGF-1) helps the heart to recover from infarct and enhances SirT1 expression in cardiomyocytes (CM) in vitro, exerting protection from hypertrophic and oxidative stresses. To study the role of mIGF-1/SirT1 signaling in vivo, we generated cardiac-specific mIGF-1 transgenic mice in which SirT1 was depleted from adult CM in a tamoxifen-inducible and conditional fashion. Analysis of these mice confirmed that mIGF-1-induced SirT1 activity is necessary to protect the heart from paraquat (PQ)-induced oxidative stress and lethality. In cultured CM, mIGF-1 increases SirT1 expression through a c-Jun NH(2)-terminal protein kinase 1 (JNK1)-dependent signaling mechanism. Thus, mIGF-1 protects the heart from oxidative stress via SirT1/JNK1 activity, suggesting new avenues for cardiac therapy during aging and heart failure.  相似文献   

13.
Oxidative stress may be viewed as an imbalance between reactive oxygen species (ROS) and oxidant production and the state of glutathione redox buffer and antioxidant defense system. Recently, a new paradigm of redox signaling has emerged whereby ROS and oxidants can function as intracellular signaling molecules, where ROS- and oxidant-induced death signal is converted into a survival signal. It is now known that oxidative stress is involved in cardiac hypertrophy and in the pathogenesis of cardiomyopathies, ischemic heart disease and congestive heart failure. Phospholipase D (PLD) is an important signaling enzyme in mammalian cells, including cardiomyocytes. PLD catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA). Two mammalian PLD isozymes, PLD1 and PLD2 have been identified, characterized and cloned. The importance of PA in heart function is evident from its ability to stimulate cardiac sarcolemmal membrane and sarcoplasmic reticular Ca2+-related transport systems and to increase the intracellular concentration of free Ca2+ in adult cardiomyocytes and augment cardiac contractile activity of the normal heart. In addition, PA is also considered an important signal transducer in cardiac hypertrophy. Accordingly, this review discusses a role for redox signaling mediated via PLD in ischemic preconditioning and examines how oxidative stress affects PLD in normal hearts and during different myocardial diseases. In addition, the review provides a comparative account on the regulation of PLD activities in vascular smooth muscle cells under conditions of oxidative stress.  相似文献   

14.
Many studies have shown that metallothionein (MT) can be increased significantly by different oxidative insults in multiple organ systems. However, the increase in MT production often fails to protect against oxidative tissue injury. On the other hand, recent studies using a cardiac-specific, MT-overexpressing, transgenic mouse model have shown that MT protects against oxidative heart injury. Thus, the present study was undertaken to test the hypothesis that prior increase in MT levels is required to prevent oxidative injury. Oxidative heart injury was induced by doxorubicin (DOX), an important anticancer drug that causes severe cardiotoxicity through oxidative stress. Cardiac-specific, MT-overexpressing, transgenic mice and wild-type (WT) FVB mice were treated with DOX at 20 mg/kg. Four days after the treatment, MT concentrations were markedly elevated in the WT mouse heart. The elevated MT concentrations were comparable with those found in the transgenic mouse heart, which did not show further MT elevation in response to DOX challenge. Severe oxidative injury occurred in the heart of WT mice, including myocardial lipid peroxidation, morphological changes as examined by electron microscopy, high levels of serum creatine kinase activity, and decreased total glutathione concentrations in the heart. However, all of these pathological changes were significantly inhibited in the MT-transgenic mice. Therefore, this study demonstrates that there is a correlation between MT induction and oxidative stress in the DOX-treated mouse heart. However, MT can protect the heart from oxidative injury only if it is present prior to induction of oxidative stress.  相似文献   

15.
Cardiac remodelling is a major determinant of heart failure (HF) and is characterised by cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. Hesperetin, which belongs to the flavonoid subgroup of citrus flavonoids, is the main flavonoid in oranges and possesses multiple pharmacological properties. However, its role in cardiac remodelling remains unknown. We determined the effect of hesperetin on cardiac hypertrophy, fibrosis and heart function using an aortic banding (AB) mouse. Male, 8–10-week-old, wild-type C57 mice with or without oral hesperetin administration were subjected to AB or a sham operation. Our data demonstrated that hesperetin protected against cardiac hypertrophy, fibrosis and dysfunction induced by AB, as assessed by heart weigh/body weight, lung weight/body weight, heart weight/tibia length, echocardiographic and haemodynamic parameters, histological analysis, and gene expression of hypertrophic and fibrotic markers. Also, hesperetin attenuated oxidative stress and myocytes apoptosis induced by AB. The inhibitory effect of hesperetin on cardiac remodelling was mediated by blocking PKCα/βII-AKT, JNK and TGFβ1-Smad signalling pathways. In conclusion, we found that the orange flavonoid hesperetin protected against cardiac remodelling induced by pressure overload via inhibiting cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. These findings suggest a potential therapeutic drug for cardiac remodelling and HF.  相似文献   

16.
Heart failure is associated with increased myocardial expression of TNF-alpha. However, the role of TNF-alpha in the development of heart failure is not fully understood. In the present study, we investigated the contribution of TNF-alpha to myocardial mitochondrial dysfunction, oxidative stress, and apoptosis in a unique dog model of heart failure characterized by an activation of all of these pathological processes. Male mongrel dogs were randomly assigned (n = 10 each) to 1) normal controls; 2) chronic pacing (250 beats/min for 4 wk) with concomitant administration of etanercept, a soluble p75 TNF receptor fusion protein, 0.5 mg/kg subcutaneously twice weekly; 3) chronic pacing with administration of saline vehicle. Mitochondrial function was assessed by left ventricular (LV) tissue mitochondrial respiratory enzyme activities. Oxidative stress was assessed with aldehyde levels, and apoptosis was quantified by photometric enzyme immunoassay for cytoplasmic histone-associated DNA fragments and terminal deoxynucleotide transferase-mediated nick-end labeling (TUNEL) assays. LV activity levels of mitochondrial respiratory chain enzyme complex III and V were reduced in the saline-treated dogs and restored either partially (complex III) or completely (complex V) in the etanercept-treated dogs. Aldehyde levels, DNA fragments, and TUNEL-positive cells were increased in the saline-treated dogs and normalized in etanercept-treated dogs. These changes were accompanied by an attenuation of LV dilatation and partial restoration of ejection fraction. Our data demonstrate that TNF-alpha contributes to progressive LV dysfunction in pacing-induced heart failure, mediated in part by a local impairment in mitochondrial function and increase in oxidative stress and myocyte apoptosis.  相似文献   

17.
At birth, the heart undergoes a critical metabolic switch from a predominant dependence on carbohydrates during fetal life to a greater dependence on postnatal oxidative metabolism. This remains the principle metabolic state throughout life, although pathologic conditions such as heart failure and cardiac hypertrophy reactivate components of the fetal genetic program to increase carbohydrate utilization. Disruption of the ERRgamma gene (Esrrg), which is expressed at high levels in the fetal and postnatal mouse heart, blocks this switch, resulting in lactatemia, electrocardiographic abnormalities, and death during the first week of life. Genomic ChIP-on-chip and expression analysis identifies ERRgamma as both a direct and an indirect regulator of a nuclear-encoded mitochondrial genetic network that coordinates the postnatal metabolic transition. These findings reveal an unexpected and essential molecular genetic component of the oxidative metabolic gene program in the heart and highlight ERRgamma in the study of cardiac hypertrophy and failure.  相似文献   

18.
Detection of ultraweak chemiluminescence (CL) emission from the surface of the organ is a sensitive and non-disruptive tool to evaluate the oxidative stress in rat heart. Indeed, an increased photon emission rate can be observed when cellular antioxidants such as glutathione or vitamin E are depleted, or when organic hydroperoxides are infused. We used CL recording to demonstrate in rat heart that: (i) different diets may lead to different heart sensitivity to an oxidative stress; and (ii) post-ischaemic reoxygenation induces an oxidative stress. CL emission induced by an oxidative stress is accompanied by an increased release of eicosanoids. However, while non-steroid anti-inflammatory drugs (aspirin, indomethacin and ibuprofen) prevented eicosanoid release, these compounds dramatically enhanced hydroperoxide-dependent CL. The nature of this phenomenon is still obscure, but the increase of steady-state concentration of excited species caused by anti-inflammatory drugs seems to be pathophysiologically relevant, since in all our experimental conditions tissue damage was proportional to CL emission rate.  相似文献   

19.
Heart failure is a complex syndrome of numerous dysfunctional components which converge to cause chronic progressive failure of ventricular contractile function and maintenance of cardiac output demand. The aim of this brief review is to highlight some of the mounting evidence indicating that augmented superoxide, related reactive oxygen species and other free radicals contribute to the oxidative stress evident during the progression of heart failure. While much of the source of increased reactive oxygen species is mitochondrial, there are other intracellular sources, which together are highly reactive with functional and structural cellular lipids and proteins. Bioenergetic defects limiting ATP synthesis in the failing myocardium relate not only to post-translational modification of electron transport respiratory chain proteins but also to perturbation of Krebs Cycle enzyme-dependent synthesis of NADH. Accumulation of pathological levels of lipid peroxides relate to dysfunction in the intrinsic capacity to clear and renew dysfunctional proteins. This review also features key limitations of human heart failure studies and potential clinical therapies that target the elevated oxidative stress that is a hallmark of human heart failure.  相似文献   

20.
《Autophagy》2013,9(8):917-918
Autophagy is characterized by recycling of cellular organelles and can be induced by several stimuli, including nutrient deprivation and oxidative stress. As a major site of free radical production during oxidative phosphorylation, mitochondria are believed to be primary targets of oxidative damage during stress. Our recent study demonstrated that angiotensin II increases cardiac mitochondrial reactive oxygen species (ROS) production, causes a decline of mitochondrial membrane potential in cardiomyocytes and increases cardiac mitochondrial protein oxidative damage and mitochondrial DNA deletions. The deleterious effects of angiotensin II on mitochondria are associated with an increase in autophagosomes and increased signaling of mitochondrial biogenesis, interpreted as an attempt to replenish the damaged mitochondria and restore energy production. Direct evidence for the central role of mitochondrial ROS was investigated by comparing the effect on mice overexpressing catalase targeted to mitochondria (mCAT) and mice overexpressing peroxisomal targeted catalase (pCAT, the natural site of catalase) challenged by angiotensin II or Gαq overexpression. The mCAT, but not pCAT, mice are resistant to cardiac hypertrophy, fibrosis and mitochondrial damage, biogenesis and autophagy induced by angiotensin II, as well as heart failure induced by overexpression of Gαq.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号