首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Functional characterization of genes involved in the flavonoid metabolism and its regulation requires in-depth analysis of flavonoid structure and composition of seed from the model plant Arabidopsis thaliana. Here, we report an analysis of the diverse and specific flavonoids that accumulate during seed development and maturation in wild types and mutants. Wild type seed contained more than 26 different flavonoids belonging to flavonols (mono and diglycosylated quercetin, kaempferol and isorhamnetin derivatives) and flavan-3-ols (epicatechin monomers and soluble procyanidin polymers with degrees of polymerization up to 9). Most of them are described for the first time in Arabidopsis. Interestingly, a novel group of four biflavonols that are dimers of quercetin-rhamnoside was also detected. Quercetin-3-O-rhamnoside (the major flavonoid), biflavonols, epicatechin and procyanidins accumulated in the seed coat in contrast to diglycosylated flavonols that were essentially observed in the embryo. Epicatechin, procyanidins and an additional quercetin-rhamnoside-hexoside derivative were synthesized in large quantities during seed development, whereas quercetin-3-O-rhamnoside displayed two peaks of accumulation. Finally, 11 mutants affected in known structural or regulatory functions of the pathway and their three corresponding wild types were also studied. Flavonoid profiles of the mutants were consistent with previous predictions based on genetic and molecular data. In addition, they also revealed the presence of new products in seed and underlined the plasticity of this metabolic pathway in the mutants.  相似文献   

2.
  In the male sterile32(ms32)mutant in Arabidopsis thaliana, pollen development is affected during meiosis of pollen mother cells (PMCs). In normal wild-type (WT) anthers, callose is deposited around PMCs before and during meiosis, and after meiosis the tetrads have a complete callose wall. In ms32, PMCs showed initial signs of some callose deposition before meiosis, but it was degraded soon after, as was part of the cellulosic wall around the PMCs. The early dissolution of callose in ms32 was associated with the occurrence of extensive stacks of rough ER (RER) in tapetal cells. The stacks of RER were also observed in the WT tapetum, but at a later stage, i.e., after the tetrads were formed and when callose is normally broken down for release of microspores. Based on these observations it is suggested that: (1) callose degradation around developing microspores is linked to the formation of RER in tapetal cells, which presumably synthesize and/or secrete callase into the anther locule, and (2) mutation in MS32 disrupts the timing of these events. Received: 27 April 1999 / Revision accepted: 21 June 1999  相似文献   

3.
The insertion of foreign DNA in plants occurs through a complex interaction between Agrobacteria and host plant cells. The marker gene β-glucuronidase of Escherichia coli and cytological methods were used to characterize competent cells for Agrobacterium-mediated transformation, to study early cellular events of transformation, and to identify the potential host-cell barriers that limit transformation in Arabidopsis thaliana L. Heynh. In cotyledon and leaf explants, competent cells were mesophyll cells that were dedifferentiating, a process induced by wounding and-or phytohormones. The cells were located either at the cut surface or within the explant after phytohormone pretreatment. In root explants, competent cells were present in dedifferentiating pericycle, and were produced only after phytohormone pretreatment. Irrespective of their origin, the competent cells were small, isodiametric with thin primary cell walls, small and multiple vacuoles, prominent nuclei and dense cytoplasm. In both cotyledon and root explants, histological enumeration and β-glucuronidase assays showed that the number of putatively competent cells was increased by preculture treatment, indicating that cell activation and cell division following wounding were insufficient for transformation without phytohormone treatment. Exposure of explants for 48 h to A. tumefaciens produced no characteristic stress response nor any gradual loss of viability nor cell death. However, in the competent cell, association between the polysaccharide of the host cell wall and that of the bacterial filament was frequently observed, indicating that transformation required polysaccharide-to-polysaccharide contact. Flow cytofluorometry and histological analysis showed that abundant transformation required not only cell activation (an early state exhibiting an increase in nuclear protein) but also cell proliferation (which in cotyledon tissue occurred at many ploidy levels). Noncompetent cells could be made competent with the appropriate phytohormone treatments before bacterial infection: this should aid analysis of critical steps in transformation procedures and should facilitate developing new strategies to transform recalcitrant plants.  相似文献   

4.
Morphological analysis of flowers was carried out in Arabidopsis thaliana wild type plants and agamous and apetala2 mutants. No direct substitution of organs takes place in the mutants, since the number and position of organs in them do not correspond to the structure of wild type flower. In order to explain these data, a notion of spatial pattern formation in the meristem was introduced, which preceded the processes of appearance of organ primordia and formation of organs. Zones of acropetal and basipetal spatial pattern formation in the flower of wild type plants were postulated. It was shown that the acropetal spatial pattern formation alone took place in agamous mutants and basipetal spatial pattern formation alone, in apetala2 mutants. Different variants of flower structure are interpreted as a result of changes in the volume of meristem (space) and order of spatial pattern formation (time).  相似文献   

5.
Calmodulin, a primary plant calcium receptor, is known to be intimately involved with gravitropic sensing and transduction. Using the calmodulin-binding inhibitors trifluoperazine, W7 and calmidazolium, gravitropic curvature of Arabidopsis thaliana (L.) Heynh, ecotype Landsberg, roots was separable into two phases. Phase I was detected at very low concentrations (0.01 μM) of trifluoperazine and calmidazolium, did not involve growth changes, accounted for about half the total curvature of the root and may represent the specific contribution of the cap to gravity sensing. Phase II commenced around 1.0 μM and involved inhibition of both growth and curvature. The agr-3 mutant exhibited a reduced gravitropic response and was found to lack phase I curvature, suggesting that the mutation alters either use or expression of calmodulin. The sequences of wild-type and agr-3 calmodulin (CaM-1) cDNAs, which are root specific were completely determined and found to be identical. Upon gravitropic stimulation, wild-type Arabidopsis seedlings increased calmodulin mRNA levels by threefold in 0.5 h. On the other hand, gravitropic stimulation of agr-3 decreased calmodulin mRNA accumulation. The possible basis of the two phases of curvature is discussed and it is concluded that agr-3 has a lesion located in a general gravity transmission sequence, present in many root cells, which involves calmodulin mRNA accumulation.  相似文献   

6.
Summary Aspects of megasporogenesis in Arabidopsis thaliana have been investigated using a variety of histochemical techniques to visualize general cell organization, DNA and callose in whole ovules and sections by bright field, fluorescence, differential interference contrast and scanning electron microscopy. The microtubular cytoskeleton has been studied using immunofluorescence localization of tubulin in sections and whole cells. The observations deviate from reports of preceding studies in that the megasporocyte was found to undergo both meiotic divisions followed by simultaneous cytokinesis (i.e. without an intermediate dyad stage) to give a multiplanar tetrad of megaspores. This represents a variation of monosporic development not previously described. Polarized distribution of organelles prior to meiosis ensures that the functional megaspore receives the largest share. Aberrant wall formation is common between degenerating megaspores. Localized callose deposition in the tetrad separates these cells from the active megaspore. Their pattern of degeneration and displacement is extremely flexible within the embryo sac space. The microtubular cytoskeleton is extensive and largely cytoplasmic, as distinct from cortical, throughout megasporogenesis. In the megasporocyte, megaspores and one-nucleate embryo sac, randomly oriented microtubules throughout the cells may serve to maintain cytoplasmic integrity and position organelles. Numerous microtubules (MTs) associate closely with the nucleus and some radiate from it, perhaps functioning in nuclear positioning. During meiosis MTs are restricted to the spindle configurations and later to the phragmoplasts which form between daughter nuclei. The lack of interphase cortical arrays suggests that the role of internal influences on cell shape is small.  相似文献   

7.
A cDNA encoding for a 68 kDa GTP-binding protein was isolated from Arabidopsis thaliana (aG68). This clone is a member of a gene family that codes for a class of large GTP-binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron.  相似文献   

8.
Arabidopsis cDNAs encoding ATJ11, the smallest known J-domain protein, have been isolated and characterized. The precursor protein of 161 amino acid residues was synthesized in vitro and imported by isolated pea chloroplasts where it was localized to the stroma and cleaved to a mature protein of 125 amino acid residues. The mature protein consists of an 80 amino acid J-domain, and N- and C-terminal extensions of 24 and 21 amino acid residues, respectively, which show no similarity to regions in other DnaJ-related proteins. ATJ11 produced in Escherichia coli stimulated the weak ATPase activity of E. coli DnaK, but was unable to stimulate refolding of firefly luciferase by DnaK, and inhibited refolding by DnaK, DnaJ and GrpE. ATJ11 is encoded by a single-copy gene on chromosome 4, and is expressed in all plant organs examined. A paralogue of ATJ11, showing 72% identity, is encoded in a 4.5 Mb duplication of chromosome 4 on chromosome 2. These proteins represent a novel class of J-domain proteins.  相似文献   

9.
In cell-suspension cultures of Arabidopsis thaliana (L.) Heynh., transfer to auxin-free medium initiates regeneration leading to the formation of numerous rootlets around day 5. This process is promoted by continuous irradiation of the cell cultures with blue light (400–500 nm) while red light (600–700 nm) is ineffective in this respect. During the course of this process, two mRNA species, encoding, respectively, chalcone synthase and a plasmalemma channel protein, transiently accumulate. A second temporary increase in the steady-state level of these mRNAs is correlated with the onset of chloroplast development after 13–17 d of blue-light exposure of the cell cultures. During this cellular differentiation process a number of mRNAs start to accumulate which specify prominent plastid proteins: the small and the large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (SSU and LSU), respectively the light-harvesting chlorophyll-a/b protein II (LHCPII). These findings are in accordance with those obtained with carrot suspension cultures where a clear sequence of development, i.e. the formation of somatic embryos followed by bluelight-dependent chloroplast differentiation, has also been observed.Abbreviations AthH2 intrinsic membrane protein of Arabidopsis thaliana (gene) - CHS chalcone-synthase - 2,4-D 2,4-dichlorophenoxyacetic acid - EFR energy fluence rate - LHCPII cab light harvesting chlorophyll-a/b protein of photosystem II (gene) - LSU rbcL large subunit of Rubisco - SSU rbcS small subunit of Rubisco - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenaseDedicated to Prof. Wolfhart Rüdiger on the occasion of this 60th birthdayThe research was supported by the Deutsche Forschungsgemeinschaft. We thank Mrs. I. Liebscher for her competent assistance. For the generous gift of cloned gene sequences we thank Prof. Dr. G. Link (Pflanzliche Zellphysiologie, Bochum, Germany), Dr. A. Batschauer (Biologisches Institut II/Botanik, Freiburg, Germany) and Dr. B. Weißhaar (MPI für Züchtungsforschung, Köln, Germany).  相似文献   

10.
The major storage proteins isolated from wild-type seeds of Arabidopsis thaliana (L.) Heynh., strain Columbia, were studied by sucrose gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both the hypocotyl and cotyledons of mature embryos contained abundant 12 S (cruciferin) and 2 S (arabin) proteins that appeared similar in size and subunit composition to the cruciferin (12 S) and napin (1.7 S) seed-storage proteins of Brassica napus. The 12 S protein from Arabidopsis was resolved by SDS-PAGE into two groups of subunits with approximate relative molecular weights of 22–23 kDa (kilodalton) and 30–34 kDa. These polypeptides accumulated late in embryo development, disappeared early in germination, and were not detected in other vegetative or reproductive tissues. Accumulation of the 12 S proteins in aborted seeds from nine embryo-lethal mutants with different patterns of abnormal development was studied to determine the extent of cellular differentiation in arrested embryos from each mutant line. Abundant 12 S proteins were found in arrested embryos from two mutants with late lethal phases, but not in seven other mutants with lethal phases ranging from the globular to the cotyledon stages of embryo development. These results indicate that the accumulation of seed-storage proteins in wild-type embryos of Arabidopsis is closely tied to morphogenetic changes that occur during embryo development. Embryo-lethal mutants may therefore be useful in future studies on the developmental regulation of storage-protein synthesis.Abbreviations kDa kilodalton - Mr relative molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

11.
Four new independent lines that exhibit co-suppression of an introduced cab140::tms2 gene and the native cab140 gene have been isolated in Arabidopsis thaliana. These lines are of particular interest because the homology shared between the introduced and native genes is 1.3 kb of promoter DNA that only contains 14 bp of transcribed region. Most other reported examples of co-suppression involve homologies between transcribed portions of genes. A similar line, lct, had been isolated previously from EMS-mutagenized seeds, and we concluded that this example of co-suppression was probably due to a mutation that mapped at or near the introduced cab140::tms2 gene [Brusslan JA, Karlin-Neumann GA, Huang L, Tobin EM: Plant Cell 5: 667–677 (1993)]. Our observations with these four new lines, however, suggest that an epigenetic event(s) rather than a mutation might be the cause of co-suppression in these and the lct line.  相似文献   

12.
The age of the Arabidopsis thaliana genome duplication   总被引:3,自引:0,他引:3  
We estimate the timing of the Arabidopsis thaliana whole-genome duplication by means of phylogenetic and statistical analysis, and propose two possible scenarios for the duplication. The first one, based on the assumption that the duplicated segments diverged from an autotetraploid form, places the duplication at about 38 million years ago, after the Arabidopsislineage diverged from that of soybean (Glycine max) and before it diverged from its sister genus, Brassica. The second scenario assumes that the ancestor was allotetraploid, and suggests that the duplication is younger than 38 million years and may have contributed to the Arabidopsis-Brassica divergence. In each case, our estimate places the age of the genome duplication as significantly younger than previously reported.  相似文献   

13.
14.
Summary A population of A. thaliana, produced by self-fertilization of ethylmethane sulfonate treated plants, was exposed to chlorate in the watering solution, and plants showing early susceptibility symptoms were rescued. Among the progeny lines of these plants five were shown to be repeatably chlorate-hypersusceptible. One of these lines (designated C-4) possessed elevated activity of nitrate reductase (NR). The NR activity of mutant C-4 was higher than that of normal plants throughout the life cycle. Nitrite reductase and glutamine synthetase activities of C-4 were normal, as were chlorate uptake rate and tissue nitrate content. The elevated NR activity apparently was responsible for the chlorate hypersusceptibility of C-4. Inheritance studies of NR indicated that the elevated activity of C-4 was probably controlled by a single recessive allele.  相似文献   

15.
Thirty five strains of Arabidopsis thaliana (L.) Heynh. have been identified with altered phototropic responses to 450-nm light. Four of these mutants have been more thoroughly characterized. Strain JK224 shows normal gravitropism and second positive phototropism. However, while the amplitude for first positive phototropism is the same as that in the wild-type, the threshold and fluence for the maximum response in first positive phototropism are shifted to higher fluence by a factor of 20–30. This mutant may represent an alteration in the photoreceptor pigment for phototropism. Strain JK218 exhibits no curvature to light at any fluence from 1 mol·m-2 to 2700 mol·m-2, but shows normal gravitropism. Strain JK345 shows no first positive phototropism, and reduced gravitropism and second positive phototropism. Strain JK229 shows no measurable first positive phototropism, but normal gravitropism and second positive phototropism. Based on these data, it is suggested that: 1. gravitropism and phototropism contain at least one common element; 2. first positive and second positive phototropism contain at least one common element; and 3. first positive phototropism can be substantially altered without any apparent alteration of second positive phototropism.Abbreviation WT wild-type  相似文献   

16.
The time of flowering is regulated by various environmental cues, and in some plant species, it is known to be affected by abiotic stresses. We investigated the effect of nutrient stress caused by an abrupt reduction of mineral nutrition on flowering of Arabidopsis thaliana. We used a hydroponic culture system that enabled us to precisely control nutrient levels. When plants were grown in full-strength nutrient solution for several weeks and then transferred to a diluted medium, the time from sowing to bud appearance was significantly shortened. This acceleration of flowering was more pronounced in short days than in long days, and stronger in the ecotype Landsberg erecta than in Columbia and San Feliu-2. The response was also affected by the age of plants at the beginning of nutrient stress and by the concentration of the diluted medium: earlier treatment and more diluted solutions strengthened the effect. Flowering was affected by nutrient stress, not by a change in the osmotic potential of the medium: addition of mannitol to a 1000-fold diluted solution had no effect on the promotion of flowering. When 3-week-old Landsberg erecta plants were exposed to 1000-fold diluted nutrient solution in an 8-h day length, flower bud appearance was strongly and reproducibly advanced by 10.8–12.8 d compared with control plants (which developed buds 41.1–46.2 d after sowing). This treatment can serve as an optimized protocol for future studies concerning physiological, molecular and ecological aspects of flower induction by nutrient stress in A. thaliana.  相似文献   

17.
The transition from vegetative growth to flowering is the most drastic change in plant development. In order to examine the involvement of ethylene in growth transition, we compared the development of ethylene-related mutants, eto1, etr1, ein2-1 and ein3-1, with the wild type (WT) in Arabidopsis thaliana. The ethylene sensitivity of two WT and the mutants is decreased in the following order: eto1 = WT < ein3-1 < ein2-1 = etr1-1. Bolting time was also delayed in nearly the same order: eto1 < WT < ein3-1 < ein2-1 < etr1. Leaf numbers increased according to the delay of bolting time, indicating that the delay of bolting time was caused by the delay of transition from vegetative to reproductive growth. Other growth parameters, including leaf area and number of flowers opening at the same time, increased in the same order, indicating that these changes were caused by a single factor, the amount of ethylene signal which was transferred though an ethylene signal transduction pathway. These results suggest that ethylene is involved in the transition from vegetative to reproductive growth in Arabidopsis thaliana.  相似文献   

18.
Very few vacuolar two pore potassium channels (TPKs) have been functionally characterized. In this paper we have used complementation of K+ uptake deficient Escherichia coli mutant LB2003 to analyze the functional properties of Arabidopsis thaliana TPK family members. The four isoforms of AtTPKs were cloned and expressed in LB2003 E. coli background.The expression of channels in bacteria was analyzed by RT-PCR. Our results show that AtTPK1, AtTPK2 and AtTPK5 are restoring the LB2003 growth on low K+ media. The analysis of potassium uptake exhibited elevated level of K+ uptake in the same three types of AtTPKs transformants.  相似文献   

19.
Physiological basis of QTLs for boron efficiency in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Boron (B) is an essential micronutrient for higher plants, but the adaptability of plants to B deficiency varies widely both between and within species. On the basis of quantitative trait loci (QTL) analysis of the B efficiency coefficient (BEC) detected in an Arabidopsis thaliana Ler × Col recombinant inbred (RI) population, B efficiency was evaluated in the original parents (Ler and Col-4) and two F8 lines (1938 and 1961), both of which were selected on the basis of phenotype and genotype of the RI population. The parent Ler and F8 progeny 1938 had higher BEC and B utilization efficiency (BUE) values than those calculated for parent Col-4 and F8 progeny 1961, respectively, when grown in nutrient solutions containing three different concentrations of B. The magnitude of the BEC and BUE-values was correlated closely with the combined phenotypic effect of the corresponding QTLs among the four genotypes. The F8 line, 1938, inherited all four B-efficient QTLs, AtBE1-1, AtBE1-2, AtBE2 and AtBE5, from its two original parents. The four QTLs accounted for 65.2% of the total variation in BEC and 1938 showed the highest BEC (0.74) and BUE (10.5) values among the four genotypes when grown in nutrient solution that contained 0.324 μM B. Only one minor-effect QTL (AtBE1-1) was found in the parent, Col-4. This QTL accounted only for 8.8% of total BEC variation and resulted in the lowest BEC (0.39) and BUE (0.76) in Col-4 when it was grown in nutrient solution that contained 0.324 μM B. Phenotypic profile analysis showed that 1938 not only inherited the B utilization and distribution characteristics found in the silique of Ler, but also acquired the low-B requirement for root and shoot growth from Col-4. As a result, this genotype displayed the strongest tolerance to B deficiency. In addition, both B-efficient genotypes, 1938 and Ler, possessed the QTL (AtBE1-2) and both plants had high-seed yields and high-B distributions in their siliques. Therefore, we hypothesize that QTL AtBE1-2 plays a role in the utilization and/or the distribution of B to the silique when plants suffer from B deficiency. A close correlation between the B-efficient phenotype and the corresponding QTLs indicated that phenotypic differences depend on the genetic variation. Responsible Editor: Richard W. Bell.  相似文献   

20.
Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was grown under light regimes of differing spectral qualities, which results in differences in the stoichiometries of the two photosynthetic reaction centres. The acclimative value of these changes was investigated by assessing photosynthetic function in these plants when exposed to two spectrally distinct actinic lights. Plants grown in an environment enriched in far-red light were better able to make efficient use of non-saturating levels of actinic light enriched in long-wavelength red light. Simultaneous measurements of chlorophyll fluorescence and absorption changes at 820 nm indicated that differences between plants grown under alternative light regimes can be ascribed to imbalances in excitation of photosystems I and II (PSI, PSII). Measurements of chlorophyll fluorescence emission and excitation spectra at 77 K provided strong evidence that there was little or no difference in the composition or function of PSI or PSII between the two sets of plants, implying that changes in photosynthetic stoichiometry are primarily responsible for the observed differences in photosynthetic function.Abbreviations Chl chlorophyll - FR far-red light - HF highirradiance FR-enriched light (400 mol·m–2·s–1, RFR = 0.72) - HW high-irradiance white light (400 mol·m–2 1·1 s–1RFR = 1.40) - LHCI, LHCII light-harvesting complex of PSI, PSII - qO quenching of dark-level chlorophyll fluorescence - qN non-photochemical quenching of variable chlorophyll fluorescence - qP photochemical quenching of variable chlorophyll fluorescence - R red light - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase We thank Dr. Sasha Ruban for assistance with the 77 K fluorescence measurements and for helpful discussions. This work was supported by Natural Environment Research Council Grant GR3/7571A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号