首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Zhao J  Wei Z 《Bioelectromagnetics》2005,26(6):481-488
Experimental studies on effects of millimeter wave (MMW) exposure on cells cultured in Petri dishes have attracted interest in recent decades. To improve the quantification of the biological responses toward the MMW energy, an accurate and precise MMW dosimetry is to be provided. By using the finite difference time domain (FDTD) method, the numerical dosimetry is performed for a typical 35 mm Petri dish under 46 GHz continuous MMW exposure from an irradiator of a specified power pattern. With the aim of building a precise model, the meniscus at the interface between the culture solution and the Petri dish sidewall is taken into account, followed by the modeling of smooth edges of the Petri dish. The trilinear interpolation is introduced to assist the FDTD method to obtain a more precise dosimetric assessment. The specific absorption rate (SAR) distributions in the cornea cells covered by culture solution in the Petri dish are calculated and compared to display the effects of using Petri dish models of various precision and the trilinear interpolation on dosimetry results. In addition, the SAR distribution in the cells is analyzed to study its homogeneity. The results indicate that the precise Petri dish model and the application of the trilinear interpolation are helpful in improving the precision of numerical dosimetry. It is also revealed that the inhomogeneity of the SAR distribution is well beyond neglect, which deserves cautious consideration in experiments investigating MMW effects on cells in vitro.  相似文献   

2.
Animals must search for other individuals under spatially and temporally fluctuating environments. During mate searches, search timing is critical to increase encounter rate and internal oscillating clocks often play important roles in synchronization. On the other hands, some species living in areas with no or reduced periodicity do not show endogenous circadian rhythm, where little is known about how they determine search timing. Termites usually live within logs and underground with little light fluctuations, but also come out of their nests during mating flight season. After swarming, termites run on the ground to search for mates. If they fail to find mates on the flight day, they need to continue searching until a day to succeed. Here we found that unpaired termites show daily search–rest cycles and restrict searching activity to a certain period of the day by responding to photic cycles. The search–rest cycles were diel rhythmic and synchronized with light–dark cycles. Termites also showed periodic (period length ≈ 18 h) search–rest patterns under constant darkness. These results indicate that the diel rhythm is caused by the internal oscillating clocks which are entrained to the photic cycles. The search activity in light–dark cycles was observed only at a specific time during the light period, which matches approximately the time of swarming flight. Our results suggest that termites adaptively regulate their daily searching activity, if they fail to encounter mates at the flight day.  相似文献   

3.
Abstract

Plasma surface modification is an effective method for changing material properties to control cell behavior on a surface. This study investigates the efficiency of a plasma polymerized 4,7,10-trioxa-1,13-tridecanediamine (ppTTDDA) film coated on a polystyrene (PS) Petri dish, which is a biocompatible surface with carbon- and oxygen-based chemical species. The adhesion, proliferation, and migration properties of bovine aortic endothelial cells (BAECs) were profoundly enhanced in the ppTTDDA-coated PS Petri dishes without extracellular matrix (ECM) proteins, when compared with the uncoated PS Petri dishes. These observations indicate that ppTTDDA-coated PS Petri dishes can directly interact with cells, regardless of cell adhesion molecules. The increased cell affinity was attributed to the high concentration of carboxyl group on the surface of the ppTTDDA film. Such a carboxyl surface showed an excellent ability to promote culturing of BAECs. Plasma surface modification techniques are effective in improving biocompatibility and provide a surface environment for cell culture.  相似文献   

4.
Pinealectomy of sparrows abolishes the free running rhythm oflocomotor activity in constant darkness. Without their pineals,sparrows still entrain to light-dark cycles and show other signsthat they retain part, but not all, of the circadian system.Interruption of either the neural input to the pineal or itsneural output, or both, does not abolish the free running rhythm.Rhythmicity can be restored to a pinealectomized bird by implantingthe pineal of a donor into the anterior chamber of its eye.A model of the circadian system controlling locomotor behavioris proposed to account for these facts. We suggest that theavian pineal contains a self-sustained oscillator, and as aconsequence, produces a rhythmic hormonal output. Circadianfluctuations of this hormone entrain a damped oscillator locatedelsewhere, which in turn drives the locomotor activity. Eachoscillator has separate access to environmental light cycles.The behavior of a pinealectomized bird is determined exclusivelyby its damped oscillator. It does not free run because it lacksthe self-sustained oscillator which, however, can be restoredby transplantation. The transplanted pineal continues its self-sustainedcircadian hormonal output which entrains the damped oscillatorand restores the system to its normal state.  相似文献   

5.
Chick embryo fibroblasts were plated on Petri dishes that had not been treated for use in tissue culture (bacteriological dishes). On these dishes the cells grow at the same exponential rate as cells plated on tissue culture dishes, but their growth becomes inhibited sooner after plating, and therefore at a lower cell number per dish. The inhibition of cell growth on bacteriological dishes is correlated with the formation of cell clumps. Clump formation is reversible by mechanical transfer of the clumps to a tissue culture dish: the cells migrate out of the clumps, form a monolayer, and cell growth resumes.Clump formation was studied by time-lapse cinematography, and was found to be due to reduced adhesion of the cells to the bacteriological dish surface. This reduced adhesiveness of the substratum is due to a lower number of negatively-charged residues on the bacteriological dish surface, which can be measured by the binding of crystal violet. The number of negatively-charged residues, and therefore the adhesiveness of the substratum can be altered by treatment of the dishes with sulfuric acid. Serum components of the medium were found to affect cell adhesion to the bacteriological dishes, consequently altering the efficiency of cell attachment, the extent of cell growth and the pattern of clump formation.The cells in clumps were compared with those in confluent monolayers on tissue culture dishes. Growth-inhibited cells on both types of dish were found to be equally viable. Cells in clumps on bacteriological dishes were found to be inhibited in the G1 phase of the cell cycle, as are cells in density-inhibited monolayers. Infection by the oncogenic virus, Rous sarcoma virus, can release the cells from growth-inhibition on both types of dish. Cell-induced alterations of the medium are not involved in the growth inhibition of cells on bacteriological dishes.  相似文献   

6.
The vertical distribution and diel migratory behaviour of Pseudodiaptomus hessei in a freshwater lake is described. All stages showed a pronounced diel migration. During daylight naupliar and copepodite instars were almost exclusively benthic in shallow areas (<10m). Copepodite V and adult stages were predominantly benthic even at 40 m. The diurnal vertical distribution pattern implies age-related differences in photosensitivity and a possible depth-regulatory mechanism, based on the existence of differential photosensitivity, is offered to account for day-depth control. Nocturnal vertical distribution, studied approximately fortnightly during 1970–71, showed no clear seasonal variation. Variations in pattern, most obvious in adult instars, correlated with prevalent lunar conditions. Nocturnal or midnight sinking was evident, particularly in post-naupliar stages. Dusk rise and dawn descent were performed at very low light intensities and paralleled changes in light penetration. Dawn descent was less rapid than the dusk rise. An ephemeral dawn rise was sometimes observed but was not a consistent feature of all stages. An endogenous rhythm of locomotor activity was recorded under laboratory conditions. Activity was low during daylight, increased sharply at dusk and then decreased through the night to reach daytime levels at dawn. The stimulus provided by changes in light intensity and/or endogenous activity changes can account for the dusk and dawn movements of P. hessei but a definitive identification of the direct migratory stimulus is not possible. Attention is called to a closer examination of the role of endogenous activity rhythms in vertical migratory behaviour. The possible adaptive value of vertical migration to P. hessei is examined briefly.  相似文献   

7.
Kavouras JH  Maki JS 《Biofouling》2003,19(4):247-256
This laboratory study examined the effects of natural biofilms on the reattachment of young adult zebra mussels, Dreissena polymorpha, in Petri dishes. Natural biofilms were developed in glass and polystyrene Petri dishes using water samples collected at various times of the year. Biofilms were developed over 1, 3, 8, and 14 d. Controls were clean glass and polystyrene Petri dishes. Zebra mussels collected from the field (< or = 10 mm, ventral length) were placed in the dishes and their reattachment by byssal threads was recorded after 1 d. Zebra mussels reattached to the dish surface or the shells of other mussels in the dish, or remained unattached. The data indicate that reattachment to clean glass was greater than to clean polystyrene (p < or = 0.05, ANOVA), but there were no consistent differences between reattachment to filmed polystyrene and filmed glass dish surfaces. Zebra mussels in control and filmed glass dishes reattached in higher percentages to the dish surface compared to the shells of other mussels (p < or = 0.05, ANOVA). There was no difference in mussel of reattachment between the dish surface and the shells of other mussels in most control polystyrene dishes (p > 0.05, ANOVA), whereas in filmed polystyrene the percentage of reattachment to the dish surface was greater than to the shells of other mussels (p < or = 0.05, ANOVA). These results indicate that substratum wettability and the presence of biofilms on some types of substrata can be factors in the reattachment of young adult zebra mussels.  相似文献   

8.
Constant red light (RR) influences the Gonyaulax clock in several ways: (1) Phase resetting by white or blue light pulses is stronger under background RR than in constant white light (WW); (2) frequency of the rhythm is less in RR than in WW; and (3) the amplitude of the spontaneous flashing rhythm is greater in RR than in WW. The phase response curve (PRC) to 4-hr white or blue light pulses is of high amplitude (Type 0) for cells in RR, but is of lower amplitude (Type 1) for cells in WW. In all cases, the PRC is highly asymmetrical: The magnitude of advance phase resetting is far higher than that of delay resetting. Consistent with this PRC, Gonyaulax cells in RR (free-running period greater than 24 hr) will entrain to T cycles of between 21 and 26.5 hr. The bioluminescence rhythms exhibit "masking" by blue light pulses while entrained to these T cycles. The fluence response of phase resetting to light-pulse intensity is not linear or logarithmic--rather, it is discontinuous. This feature is consistent with a limit cycle interpretation of Type 0 resetting of circadian clocks. Light pulses that cause large phase shifts also shorten the subsequent free-running period. The phase angle difference between the clock and the previous LD cycle is within 2 hr of the same phase between 16 degrees C and 25 degrees C, as determined from the light PRCs at various temperatures. Several drugs that inhibit mitochondria and/or electron transport will partially inhibit the phase shift by light.  相似文献   

9.
Sand gobies ( Pomatoschistus minutus ) collected from beaches with a large tidal range (Scotland) exhibit a circatidal rhythm of activity in constant conditions in the laboratory. There is no endogenous circadian component to the rhythm. The phasing of the rhythm is such that peak activity occurs at the predicted time of ebb tide. Light-dark (LD) cycles applied in the laboratory have a marked effect on activity greatly enhancing it at night so that the original tidal rhythm becomes nocturnal. Some evidence was obtained that LD cycles can entrain a weak nocturnal circadian rhythm in fish removed from tidal conditions. Contrary to expectations, some fish from beaches with a small and unpredictable tidal range (Oslofjord, Norway) also show a weakly persistent circatidal thythm without an endogenous circadian component, but great variability was noticed between individual fish. Laboratory LD cycles did not entrain a persistent circadian rhythm in the fish from the Oslofjord.  相似文献   

10.

The copepod Dioithona oculata forms dense swarms near mangrove prop roots that are centered around shafts of light penetrating the mangrove canopy. Swarms can be created in the laboratory within light shafts created with a fiber optic light pipe. Laboratory observations of swarming behavior were recorded using video cameras, and the swimming behavior of the copepods and density of the swarms were quantified using video‐computer motion and image analysis techniques. Swarm formation results from a combination of phototactic and klino‐kinetic behavior. Dark adapted copepods initially exhibit a photophobic response to a light shaft, but become positively phototactic within 3–5 min after exposure to the light. Copepod aggregation rates under the light fit a saturation model, suggesting that copepods are attracted independently to the swarm marker. Copepods reverse their swimming direction when they encounter light intensity gradients near the edge of a light shaft, which aids in maintaining the swarm. Swarm formation can occur in the laboratory at light intensities as slow as 0.1 μM photons m‐2 s‐1, which is similar to light intensities at dawn when they are first observed to form in nature. Swarm formation appears to have an endogenous rhythm, as copepods will not form swarms at night under a light shaft.  相似文献   

11.
Condensation on the lids of Petri dishes, used to culture plant tissues, can often obscure the view of the contents of the dish and interfere with data collection. Under the high humidity conditions that exist in the culture container, a small temperature drop causes water to condense on the inside lid and sides of the container. Mild condensation causes “fogging” while continual or repeated rounds of condensation result in the formation of water droplets. To control condensation in the standard plant tissue culture Petri dish, a simple method was developed whereby the lid of the culture dish was modified, to buffer the lid from temperature fluctuations. Polymer discs, which were the same diameter as the Petri dish lid, were either placed on the top of the lids of existing dishes or surface-sterilized and used in place of the lid. Polymer discs of varying thicknesses and type, and possessing different thermal conductivities, were evaluated for their abilities to reduce the rate of condensation formation. Petri dishes with modified lids were placed under reduced temperature conditions. Condensation, forming on the lids of the dishes was quantified over time using image analysis. Gray value determinations indicated that the thicker polymer discs with the lowest thermal conductivities provided the best protection against condensation. Placement of polymer discs on the top of Petri dishes is a relatively simple method that can be used to buffer the lid from small temperature changes and minimize condensation problems.  相似文献   

12.
In Drosophila multiple circadian oscillators and behavioral rhythms are known to exist, yet most previous studies that attempted to understand circadian entrainment have focused on the activity/rest rhythm and to some extent the adult emergence rhythm. Egg laying behavior of Drosophila females also follows circadian rhythmicity and has been seen to deviate substantially from the better characterized rhythms in a few aspects. Here we report the findings of our study aimed at evaluating how circadian egg laying rhythm in fruit flies Drosophila melanogaster entrains to time cues provided by light and temperature. Previous studies have shown that activity/rest rhythm of flies entrains readily to light/dark (LD) and temperature cycles (TC). Our present study revealed that egg laying rhythm of a greater percentage of females entrains to TC compared to LD cycles. Therefore, in the specific context of our study this result can be taken to suggest that egg laying clocks of D. melanogaster entrains to TC more readily than LD cycles. However, when TC were presented along with out-of-phase LD cycles, the rhythm displayed two peaks, one occurring close to lights-off and the other near the onset of low temperature phase, indicating that upon entrainment by TC, LD cycles may be able to exert a greater influence on the phase of the rhythm. These results suggest that temperature and light associatively entrain circadian egg laying clocks of Drosophila.  相似文献   

13.
SUMMARY: A co-ordinated experiment was carried out at two centres, in which colony counts from raw milk samples determined by the roll-tube and Petri dish methods were compared. A bulk medium was standardized for both laboratories, as also were details of technique. Statistical analyses showed that roll-tube counts were generally lower than the corresponding Petri dish counts, but the difference varied considerably from milk to milk. The variation between replicate sub-samples was about the same for both methods. Experience and the results both indicate that roll-tubes were slightly more difficult to count than Petri dishes.  相似文献   

14.
Phyllosoma larvae of the spiny lobster Panulirus argus undergo diel vertical migration (DVM), in which they are at depth during the day and nearer the surface at night. This study determined the visual spectral sensitivity of Stage I larvae and investigated whether light plays a proximate role in DVM as an exogenous cue and as an entrainment cue for an endogenous rhythm in vertical migration. Under constant conditions, larvae have a circadian rhythm (24.5-h period) in vertical swimming that resulted in a twilight DVM pattern. The behavioral response spectrum and electroretinogram recording indicated two photoreceptor spectral classes with maxima at 360 and 486 nm. When stimulated in an apparatus that simulated the underwater angular light distribution, dark-adapted larvae showed only positive phototaxis, with a threshold intensity of 1.8 × 10(13) photons m(-2) s(-1) (3.0 × 10(-5) μmoles photons m(-2) s(-1)). They have an avoidance response to predator shadows in which they descend upon sudden decreases in light intensity of more than 69%. When stimulated with relative rates of decrease in light intensity as occur at sunset they ascended, whereas they descended upon relative rates of light intensity increase as occur at sunrise. Thus, the DVM pattern is controlled by both an endogenous circadian rhythm in swimming and behavioral responses to light at sunrise and sunset.  相似文献   

15.
ABSTRACT. Eclosion in Lucilia cuprina (Wiedemann) occurs near dawn. The rhythm of eclosion persists in both darkness and constant light of high intensity (490μW cm-2) with a period close to 24h. The sensitivity to light of the circadian clock controlling eclosion varies greatly according to the stage of the life cycle. During larval life the free running rhythm in darkness can be phase shifted by light pulses of 100μW cm-2 intensity, with the transition from a Type 1 phase response curve to a Type 0, occurring with pulses of between 1 and 8h. Extending the last light period of LD to 24 h followed by constant darkness resets the phase of the rhythm by 12h, a transition from constant light to constant darkness initiates rhythmicity in flies made arrhythmic by being reared from eggs collected from adults maintained in constant light. After pupariation, the rhythm is relatively insensitive to light. Rhythmicity is sometimes induced by a transition from constant light to constant darkness, but the phase of the rhythm is not shifted by extending the last light period of LD before entering constant darkness. Repeated LD cycles applied after pupariation initiate and entrain the rhythm.  相似文献   

16.
In the present work, a simple technique is proposed to study the effects of native extracellular matrix (ECM) of one cell type on the properties of other cell types. It is based on a procedure in which, after cells of one type are removed from the substrate, cells of another type are seeded on the same substrate. To obtain preparations of native ECM, cells were removed from the substrate by 0.02% EDTA only, without any proteolytic enzymes. Cells were placed on coverslips in standard Petri dishes and incubated in a culture medium for a time sufficient for adhesion and spreading, but not long enough to undergo mitosis. Up to four coverslips per Petri dish can be incubated, and various combinations of ECM and cell types can be used in one dish. It is important, therefore, that the different "ECM-cell" combinations are present in the same culture medium. For evaluation of ECM effects, the area occupied by the cell on a substrate and the perimeter of the cell were measured, and frequencies of cell distribution were calculated according to these parameters.  相似文献   

17.
This study tests the capacity of 50 Hz magnetic and electric fields to stimulate neurite outgrowth in PC-12D cells, a cell line which originated from a pheochromocytoma in rat adrenal medulla. The cells were plated on collagen-coated, plastic petri dishes and exposed to sinusoidal 50 Hz magnetic fields for 22 h in a 5% CO2 incubator at 37°C. Two 1,000 turn coils, 20 cm in diameter, were assembled in a Helmholtz configuration to generate a magnetic field in a vertical orientation, thereby inducing a companion electric field in the dish with intensity proportional to radius. A magnetic-field shield housed the control samples in the same incubator. Total cells and number of cells with neurites at least as long as one cell diameter or having a growth cone were counted within a radius of 0.3 cm of the dish center and within an annulus of 1.7–1.8 cm radii in 60 mm dishes, at 3.6 cm radius in 100 mm dishes, and between 1.9 and 2.1 cm radii in the outer well of organ culture dishes, which are physically separated into two concentric wells. Sham exposure demonstrated no difference in percentage of cells with neurites between the exposed and control locations in the incubator. Exposures were done at 4.0. 8.9, 22, 29, 40, 120, 236, and 400 milliGauss (mG). At dish radii of 1.7–1.8 cm in the 60 mm dishes these magnetic flux densities induced electric fields of 1.1, 2.5, 5.9, 8.1, 11, 33, 65, and 110 μV/m, respectively, while within a radius of 0.3 cm, the induced electric fields were less than 0.2, 0.4, 1.0, 1.5, 1.9, 6.0, 11, and 19 μV/m, respectively. For other dishes, the larger radii produced proportionally larger induced electric fields. At each field strength, there were two control dishes and four to nine exposed dishes: 100 or more cells were counted at each location on the dishes. The results demonstrate that magnetic fields stimulate neurite outgrowth in a flux-density-dependent manner between 22 and 40 mG, reaching an apparent stimulation plateau between 40 and 400 mG; no effects were seen at 8.9 mG or lower. There was no apparent neurite stimulation due to the electric field. Although relatively low intensity (?22mG) magnetic fields alone can stimulate a morphological response in a cell which is normally stimulated by nerve growth factor molecules binding to membrane receptors, the chemical basis of this response is unknown. © 1993 Wiley-Liss. Inc.  相似文献   

18.
Summary We examined the effect of cycles of 12 h warm (35 ± 2 °C) and 12 h (21 ± 2 °C) ambient temperature (Ta) upon the circadian activity rhythms of stripe-faced dunnarts, Sminthopsis macroura, free-running in conditions of constant dark (DD) or constant light (LL). It was hypothesized that dunnarts would entrain to the temperature cycles (TaHLs) or show perturbations of period, and that LL would act synergistically with the TaHLs in these effects. Under DD, 2 of 6 animals showed clear entrainment to the TaHLs. Other animals exhibited changes of period () and heavy negative masking of activity during the warm fraction of the TaHLs. Under LL, 3 of 12 animals entrained to the TaHLs. It was concluded that Ta is a significant though weak Zeitgeber for S. macroura compared to light. It is possible that TaHLs entrain homeotherm activity rhythms by altering the rhythm of body temperature, which is usually tightly coupled to activity.Abbreviations TaHL a cycle of Higher and Lower ambient temperature - TaC Constant Ta - Tb body temperature  相似文献   

19.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms.  相似文献   

20.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号