首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Sarcoplasmic reticulum Ca2+-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of 45Ca2+. A Ca2+-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca2+. The elution position corresponded to monomeric Ca2+-ATPase. It is concluded that a single Ca2+-ATPase polypeptide chain provides the full structural basis for Ca2+ occlusion.  相似文献   

2.
The fast-twitch SERCA1 isoform of the sarcoplasmic reticulum Ca(2+)-ATPase was purified to homogeneity and conjugated to peroxidase. The SERCA1 probe showed high affinity binding to the immobilized monomeric enzyme, but not crosslinker-stabilized oligomers. This suggests a preferential complex formation via homo-dimerization, rather than interactions with established oligomeric structures.  相似文献   

3.
Luminescence energy transfer measurements have been used to determine the distances between the two high affinity Ca2+ binding-transport sites of the (Ca2+ + Mg2+)-ATPase of skeletal muscle sarcoplasmic reticulum. The lanthanide Tb3+ situated at one high affinity Ca2+ site was used as the transfer donor, and acceptors at the other Ca2+ site were the lanthanides Nd3+, Pr3+, Ho3+, or Er3+. Terbium bound to the enzyme was excited directly with a pulsed dye laser. Analysis of the changes in the terbium luminescence lifetime due to the presence of the acceptor indicates that the distance between the Ca2+ sites is 10.7 A. The distance between the Ca2+ sites and the nucleotide-binding catalytic site was determined using Tb3+ at the Ca2+ sites and either trinitrophenyl nucleotides (TNP-N) or fluorescein 5-isothiocyanate (FITC) in the catalytic site as energy acceptors. The R0 values for the Tb-acceptor pairs are approximately 30 and approximately 40 A for TNP-N and FITC, respectively. The distance between Tb3+ at the Ca2+ sites and TNP-ATP at the nucleotide site is approximately 35 A and that between the Ca2+ sites and the FITC labeling site is approximately 47 A. Considerations of the molecular dimensions of the ATPase polypeptide indicate that while the two Ca2+ sites are close to each other, the Ca2+ sites and the nucleotide site are quite remote in the three-dimensional structure of the enzyme.  相似文献   

4.
Rabbit muscle sarcoplasmic reticulum Ca2+-ATPase has been shown to bind gadolinium ion (Gd3+) at two high affinity Ca2+ sites (Stephens, E. M., and Grisham, C. M. (1979) Biochemistry 18, 4876-4885). Gd3+ bound at these sites exhibits an unusually long electron spin relaxation time, consistent with occlusion of these sites and reduced contact with solvent H2O. In this report, the nature of the Gd3+ sites was examined in preparations of the enzyme solubilized with the detergent C12E8. The frequency dependence of water proton relaxation in solutions containing the solubilized Ca2+-ATPase yields dipolar correlation times, tau c, for the 1H-Gd3+ interaction of 1.04 X 10(-9) s for Gd3+ bound at site 1 and 1.98 X 10(-9) s for Gd3+ bound at site 2. The correlation time itself is frequency dependent below 30 MHz, indicating that the correlation time is dominated by the electron spin relaxation time of bound Gd3+. The long values of the correlation time found in the present study are consistent with a poor accessibility of these Gd3+ sites (particularly site 2) to solvent water molecules. Analytical ultracentrifugation and molecular sieve high performance liquid chromatography indicated that the active fraction of the soluble Ca2+-ATPase was monomeric. Thus occlusion of the Ca2+ sites in this enzyme is largely dependent on the tertiary structure of the monomeric ATPase and does not appear to depend on multimeric membrane structures.  相似文献   

5.
The occurrence of the mitotic Ca2+-ATPase, resembling the enzyme described for higher organisms, is demonstrated in multinuclear plasmodia of the myxomycete Physarum polycephalum. The activity of this enzyme undergoes cyclic fluctuations during the synchronous nuclear cycle with a minimum in early G2-phase and a maximum around the time of mitosis.  相似文献   

6.
Measurements of fluorescence energy transfer have been performed to determine the distance between the lipid-water interface and the ATP-binding site in the (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum. The calculated distance between the donor, FITC bound to the protein (nucleotide binding-site marker), and the acceptor, rhodamine-5′-isothiocyanyldipalmitoylphosphatidylethanolamine (RITC-DPPE) incorporated in the membrane, was in the range of 34–42 Å. In addition the distance between the high affinity Ca2+-binding sites and the lipid/water interface has been calculated by luminescence energy transfer from Tb3+ bound to the Ca2+ sites to RITC-DPPE included in the membrane, and it was approx. 10 Å.  相似文献   

7.
8.
The effects of 0.25-16.0 mM Ca2+ on the contractile force of isolated ventricular strips and sarcolemmal Ca2+-ATPase activity during postnatal development of the rat heart were studied. The half maximal concentrations for contractile activation of ventricular strips were 0.76 and 5.59 mM Ca2+ for adult and 3-day-old rats, respectively. The sensitivity towards Ca2+ began to change from newborn type to that of adult rat 2 weeks after birth and was almost completed after 4 weeks. No significant differences were found in half maximal activation of Ca2+-ATPase by Ca2+ between different age groups. Activation of contractility and Ca2+-ATPase by Ca2+ were linearly related in 30-day-old and adult rats but not in 3- and 10-day-old rats. The observed sensitivity change towards extracellular Ca2+ for contractile activation is suggested to be due to the development of transverse tubular system and sarcoplasmic reticulum during the first 4 weeks of postnatal development.  相似文献   

9.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

10.
The functional role of creatine phosphokinase (CPK) in the process of energy supply for the Ca2+-ATPase reaction and ion transport across the membrane of heart sarcoplasmic reticulum (SR) has been studied. It has been shown that isolated and purified preparations of heart SR contain significant activity of CPK. The localization of CPK on the membrane of SR has been revealed also by an electron microscopic histochemical method. Under conditions of the Ca+-ATPase reaction in the presence of creatine phosphate the release of creatine into the reaction medium is observed, the rate of the latter process being dependent upon the MgATP concentration in accordance with the kinetic parameters of the Ca2+-ATPase reaction. CPK localized on the SR membrane is able to maintain higher rate of calcium uptake by SR vesicles, as compared to that with added ATP-regenerating system. The results obtained demonstrate the close functional coupling between CPK and Ca2+-ATPase in the membrane of SR.  相似文献   

11.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

12.
The calcium dependency of the Ca2+-pump ATPase of rat cardiac sarcolemma was investigated in the presence and absence of EGTA and EDTA in combination with two free Mg2+-ion concentrations. The results showed: that Mg2+-ions are not essential for the turnover of the Ca2+-pump ATPase; that the Ca2+-affinity is regulated by the concentration of the calcium-chelator complex present in the medium; that (Ca2+-Mg2+)-ATPase and Ca2+-ATPase are probably expressions of the same Ca2+-pump ATPase in the plasma membrane of the cell.  相似文献   

13.
The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of Ca2+ was studied. At pH 6.0, 10 degrees C and in the absence of K+, the enzyme displays a very low velocity of ATP hydrolysis. Addition of up to 15% dimethyl sulfoxide increased this velocity severalfold (from 5-18 nmol of Pi X mg of protein-1 X h-1) and then decreased at higher solvent concentrations. Dimethyl sulfoxide increased both enzyme phosphorylation from ATP and the affinity for this substrate. Maximal levels of 1.0-1.2 nmol of EP X mg of protein-1 and apparent KM for ATP of 5 X 10(-6) M were obtained at a concentration of 30% dimethyl sulfoxide. The same preparation under optimal conditions (pH 7.5, 10 microM CaCl2, 100 mM KCl and no dimethyl sulfoxide at 37 degrees C) displays a velocity of ATP hydrolysis between 8 and 12 X 10(5) nmol of Pi X mg of protein-1 X h-1 while the phosphoenzyme levels varied between 3.5 and 4.0 nmol of EP X mg of protein-1. Enzyme phosphorylation from ATP in the absence of Ca2+ always preceded Pi liberation into the assay media. Two different phosphoenzyme species were formed which were kinetically distinguished by their decomposition rates. The observed steady-state velocity of ATP hydrolysis could be accounted for either by the decay of the fast component or by the simultaneous decomposition of both phosphoenzyme species. The hydrolysis of the phosphoenzyme formed in the absence of Ca2+ was KCl-stimulated and ADP-independent. The rate constant of breakdown was equal to that observed for the phosphoenzyme formed in the presence of Ca2+. It is suggested that the rapidly decaying phosphoenzyme (and possibly both rapidly and slowly decaying species) are intermediates in the reaction cycle of Mg2+-dependent ATP hydrolysis of sarcoplasmic reticulum Ca2+-ATPase and may represent a bypass of Ca2+ activation by dimethyl sulfoxide.  相似文献   

14.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

15.
Changes in Ca2+ binding after phosphorylation of membranous or detergent-solubilized preparations of sarcoplasmic reticulum Ca2+-ATPase with ATP were followed spectrophotometrically by the use of murexide. Distinct Ca2+ release from the two high-affinity translocation sites was observed, particularly at alkaline pH and at low Ca2+/Mg2+ concentration ratios. Phosphorylation also induced additional binding of Ca2+ at a third site in competition with Mg2+. Ca2+ release was increased after solubilization of Ca2+-ATPase in predominantly monomeric form with the nonionic detergent octaethyleneglycol monododecyl ether. At 0 degree C, chemical-quench studies with [32P]ATP indicated that release of Ca2+ is correlated with the level of ADP-insensitive phosphoenzyme (2 mol of Ca2+ released per mol of E2P formed), both for membranous and detergent solubilized Ca2+-ATPase. Ca2+ release was also found to be accompanied by changes in intrinsic fluorescence. Analysis of the data at 20 degrees C, pH 8.0, showed that binding of Ca2+ to transport sites on E2P occurs with a half-saturation constant of 0.7 mM and a Hill coefficient of 1.8. This is consistent with a drastic decrease in Ca2+ affinity following conversion of ADP-sensitive E1P to ADP-insensitive E2P. The similarity between membranous and detergent-solubilized Ca2+-ATPase supports the view that not more than a single Ca2+-ATPase polypeptide chain is required to complete the conformational transitions which are the basis for active transport of Ca2+.  相似文献   

16.
The high-affinity Ca2+-binding sites of cardiac sarcoplasmic reticulum (Ca2+ +Mg2+)-ATPase have been probed using trivalent lanthanide ions. Non-radiative energy-transfer studies, using luminescent probe Eu3+ as a donor and Nd3+ or Pr3+ as acceptor, were carried out to estimate the distance between two high-affinity Ca2+-binding/transport sites. Eu3+ was excited directly with pulsed laser light and the energy-transfer efficiency to Nd3+ or Pr3+ was measured, under the conditions in which most donor-acceptor pairs occupied the high-affinity Ca2+ sites. The distance between two high-affinity Ca2+ sites is about 0.89 nm. In the presence of ATP the distance between the high-affinity sites is about 0.855 nm, whereas in the presence of adenosine 5'-[beta, gamma-methylene]triphosphate or adenosine 5'-[beta, gamma-imino]triphosphate the distance is about 0.895 nm. To estimate the distance between the high-affinity Ca2+ sites and ATP-binding/hydrolytic site, we have measured the energy-transfer efficiency between Eu3+ and Cr3+-ATP with Eu3+ at the high-affinity Ca2+ sites and Cr3+-ATP at the ATP-binding/hydrolytic site. Our results show that ATP-binding/hydrolytic site is separated by about 2.2 nm from each high-affinity Ca2+ site.  相似文献   

17.
Heavy sarcoplasmic reticulum (SR) preparations of rabbit skeletal muscle, which are enriched in Ca2+-release vesicles from the terminal cisternae (TC) and [3H]ryanodine receptor density, exhibit 60% of the Ca2+-ATPase activity, 58% of the EP level, and 30% of the steady state Ca2+ loading compared to membrane vesicles from the longitudinal SR. The Ca2+-ATPase of TC SR is solubilized and separated from the Ca2+-ryanodine receptor complex in the insoluble fraction on treatment with the detergent C12E9. However, a 50% decrease in receptor density is observed upon removal of the Ca2+-ATPase, suggesting a significant contribution of this protein to maintaining optimal receptor complex density.  相似文献   

18.
Occlusion of Ca2+ induced by beta, gamma-bidentate CrATP in membrane bound and in soluble monomeric sarcoplasmic reticulum Ca2+-ATPase was studied by previously developed filtration and HPLC techniques (Vilsen and Andersen (1986) Biochim. Biophys. Acta 855, 429-431). Activation of Ca2+ occlusion occurred at micromolar free Ca2+ and depended on the concentration of Ca2+, H+ and Mg2+ in a similar way as activation of Ca2+ transport and equilibrium Ca2+ binding to high-affinity Ca2+ transport sites. The slopes of the Ca2+ titration curves indicated that Ca2+ binding is a cooperative process both in membraneous and in soluble monomeric enzyme. At alkaline pH and absence of Mg2+, occlusion of Ca2+ was inhibited by 1 mM Ca2+ in membrane-bound, but not in soluble monomeric Ca2+-ATPase. Parallel studies of phosphorylation from [gamma-32P]CrATP indicated a stoichiometry of 2 mol Ca2+ occluded per mol Ca2+-dependent EP formed, at saturating as well as at desaturating Ca2+ concentrations. Tryptic digestion of the CrATP induced Ca2+ occluded complex indicated that it belongs to the E1 conformational class (E1P). In the absence of Ca2+ and Mg2+, but presence of CrATP the conformational state was E2. When Mg2+ was added together with CrATP at alkaline pH the conformation was shifted in direction of E1.  相似文献   

19.
It is thought that a plasma membrane Ca(2+)-transport ATPase (PMCA) and a Na(+)/Ca(2+)-exchange (NCE) mechanism are involved in epithelial Ca(2+) transport (ECT) in a variety of crustacean epithelia. The sternal epithelium of the terrestrial isopod Porcellio scaber was used as a model for the analysis of Ca(2+)-extrusion mechanisms in the hypodermal epithelium. Using RT-PCR, we amplified a cDNA fragment of 1173 bp that encodes a protein sequence possessing 72% identity to the PMCA from Drosophila melanogaster and a cDNA fragment of 791 bp encoding a protein sequence with 50% identity to the NCE from Loligo opalescens. Semiquantitative RT-PCR revealed that the expression of both mRNAs increases from the non-Ca(2+)-transporting condition to the stages of CaCO(3) deposit formation and degradation. During Ca(2+)-transporting stages, the expression of PMCA and NCE was larger in the anterior sternal epithelium (ASE) than in the posterior sternal epithelium (PSE). The results demonstrate for the first time the expression of a PMCA and a NCE in the hypodermal epithelium of a crustacean and indicate a contribution of these transport mechanisms in ECT.  相似文献   

20.
V Marchi  A Sorin  Y Wei  R Rao 《FEBS letters》1999,454(3):181-186
We have analyzed Ca2+ transport activity in defined subcellular fractions of an isogenic set of wild-type and mutant yeast. The results, together with measurements of polypeptide expression levels and promoter::reporter gene activity, show that the Golgi Ca2+-ATPase, Pmr1, is the major Ca2+ pump under normal growth conditions. In the absence of Pmr1, we show a massive, calcineurin-dependent compensatory induction of the vacuolar Ca2+-ATPase, Pmc1. In addition, H+/Ca2+ exchange activity, that may be distinct from the vacuolar exchanger Vcx1, is also increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号