首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of tree growth/climate response relationships is important to dendroecological studies and dendroclimatic reconstructions, particularly in the Southeastern Coastal Plain where few such studies have been attempted. To this end, we developed tree-ring chronologies of total ring width, earlywood width, and latewood width from longleaf pine (Pinus palustris Mill.) at three sites in the Southeastern Coastal Plain to examine the climate–growth relationships for this tree species. The length of these chronologies is unprecedented for southern pine chronologies in the Southeast. We compared the tree-ring chronologies to monthly temperature, precipitation, Palmer drought severity index (PDSI), and Palmer hydrological drought index (PHDI) data from the pertinent climate divisions. We found that PDSI and PHDI have the highest correlation with longleaf pine growth, and the strongest relationships between longleaf pine growth and these variables occur between July and November. Precipitation in the spring and summer was also positively related to growth at all sites. The relationship between temperature and growth was the weakest among all climate variables, but warm summer temperatures had a consistent, negative relationship with longleaf pine growth. The climate signal in the latewood was generally more robust than for total ring width and earlywood width.  相似文献   

2.
Questions: (1) How do extreme climatic events and climate variability influence radial growth of conifers (silver fir, Norway spruce, Scots pine)? (2) How do elevation and soil water capacity (SWC) modulate sensitivity to climate? Location: The sampled conifer stands are in France, in western lowland and mountain forests, at elevations from 400 to 1700 m, and an SWC from 50 to 190 mm. Methods: We established stand chronologies for total ring width, earlywood and latewood width for the 33 studied stands (985 trees in total). Responses to climate were analysed using pointer years and bootstrapped response functions. Principal component analysis was applied to pointer years and response function coefficients in order to elucidate the ecological structure of the studied stands. Results: Extreme winter frosts are responsible for greater growth reductions in silver fir than in Norway spruce, especially at the upper elevation, while Scots pine was the least sensitive species. Exceptional spring droughts caused a notable growth decrease, especially when local conditions were dry (altitude<1000 m and SWC<100 mm for silver fir, western lowlands for Scots pine). Earlywood of silver fir depended on previous September and November and current‐year February temperature, after which current June and July water supply influenced latewood. Earlywood of Norway spruce was influenced by previous September temperature, after which current spring and summer droughts influenced both ring components. In Scots pine, earlywood and latewood depended on the current summer water balance. Local conditions mainly modulated latewood formation. Conclusions: If the climate becomes drier, low‐elevation dry stands or trees growing in western lowlands may face problems, as their growth is highly dependent on soil moisture availability.  相似文献   

3.
树木年轮 (简称树轮 ) 气候学是监测与重建全球气候变化的重要方法之一。针叶树树轮的生长能反馈出气温的变化, 在高纬度地带尤为明显。该文分析了生长在我国最北部的兴安落叶松 (Larixgmelinii) 与樟子松 (Pinussylvestrisvar.mongolica) 的树轮密度和宽度的特性。落叶松最大密度、晚材平均密度、早晚材宽度和轮宽都远高于樟子松。樟子松的所有密度变量的样本方差都明显高于兴安落叶松, 宽度变量的样本方差却明显低于兴安落叶松。两树种密度变量的差值年表显著相关, 宽度变量之间没有显著相关关系。落叶松与樟子松的晚材密度的形成受 7、8月的最高温控制。另外, 樟子松的晚材还与生长季节的长短相关。落叶松的年轮宽度对生长季节开始前的温度敏感, 而樟子松的轮宽对气候变量没有很好的响应。结果表明, 落叶松与樟子松的树轮最大密度都与生长季后期的温度显著相关, 两树种的树轮信息对气候变化的重建有很大的潜力。  相似文献   

4.
We obtained tree-ring chronologies for pedunculate oak along an altitudinal gradient of four sites in NW Iberia, which covers most of the species range within the region. Trees grow under Atlantic climate, with a rainfall maximum in autumn-winter, and a minimum during summer, but lacking a remarkable drought. Chronologies included several earlywood anatomical features and ring widths, which were compared to each other. Latewood width and a subset of six earlywood variables were selected for further analyses, considering the period 1954–2003.The lowest site considerably differed from the rest of the gradient due to its milder conditions. Earlywood and latewood were unrelated at the three upper sites, and both compartments responded to different climatic factors. Hydraulic conductivity determined by vessel size was used to describe tree performance, which was modulated by temperature along the gradient. We hypothesize that the main processes involved are the timing of earlywood formation and carbohydrate dynamics. Water availability during late spring and summer affected latewood width, but only at low elevation.This paper illustrates the complexity of analyzing climate-growth relationships in oceanic areas under the absence of a prevailing limiting factor, while providing a feasible explanation of potential mechanisms involved.  相似文献   

5.
Climate influences wood density and this relationship affects the ability of conifer forests to uptake and store carbon. Some conifer species can show mixed responses to long-term climate variability in their within-ring width and density patterns. Here we analyze if tree-ring width and density differently respond to seasonal climate variability in silver fir (Abies alba) forests from the Spanish Pyrenees subjected to cold and Mediterranean influences. In these forests, early growing-season dry conditions increase minimum wood density, possibly by reducing lumen diameter and lowering growth rates. Cold conditions during the late growing season are associated to a decrease in maximum wood density, probably through a reduction in the lignification and thickening rates of latewood tracheids. We test if these associations follow climatic and biogeographic patterns since the Mediterranean influence, characterized by late-summer storms which alleviate drought stress, is prevalent eastwards in this region. Silver-fir intra-annual width and wood density data showed mixed responses to climate. Minimum wood density negatively responded to spring precipitation, particularly in dry sites forming the southernmost distribution limit of the species. Maximum wood density positively responded to mean maximum temperatures and sunshine duration during late summer and early autumn, mainly in eastern sites subjected to a dominant Mediterranean influence where late-summer drought stress is expected to be low. More extreme climate conditions including dry spells could shift minimum wood density and reduce hydraulic conductivity and growth in conifer species as silver fir which dominate mesic sites. Warmer conditions would lead to denser latewood in silver fir if accompanied by longer durations of sunshine.  相似文献   

6.
《Dendrochronologia》2014,32(4):295-302
In this study, wood anatomy, tree-ring width and wood density of Pinus sylvestris at the northern timberline in Fennoscandia were used to identify relationships among the parameters and to screen them for their climatic signals. Furthermore we investigated the influence of the juvenile wood section for all parameters developed. The measurements of wood anatomy were conducted with confocal laser scanning microscopy (CLSM) while the density profiles were produced using an Itrax MultiScanner. We developed chronologies of ring width, wood density and anatomy for a period between 1940 and 2010. Correlations between wood density and wood anatomy were strong in the latewood part. For some wood anatomy and density chronologies youth trends were found in the juvenile part. Wood density decreased from the pith up to the 9th ring and stabilized afterwards, while cell lumen diameter and lumen area increased simultaneously up to the 15th ring. All chronologies contained strong summer temperature signals. The wood anatomical variables provided additional information about seasonal precipitation which could not be found in wood density and tree-ring widths. Our study confirmed previous results stating that the parameter maximum density contains the strongest climate signal, that is, summer temperatures at the northern timberline. Nevertheless, the intra-annual data on tracheid dimensions showed good potential to supply seasonal climatic information and improve our understanding of climatic effects on tree growth and wood formation.  相似文献   

7.
近年来逆境导致植物雌雄幼苗的生长出现差异被许多控制实验所证实, 而有关气候变化对雌雄异株植物成树生长的潜在影响尚未引起人们广泛的关注。为进一步揭示气候变化对雌雄植株树木径向和密度生长的不同影响, 该文通过树轮生态学的研究方法, 选择小五台山天然青杨(Populus cathayana)种群为研究对象, 对青杨雌雄植株近30年(1982-2011)的树轮生长特性及其与气候的相关性进行了分析。结果显示: 1)在近30年当地气温不断升高的气候条件下, 雌株的年轮最大密度和晚材平均密度均高于雄株(p < 0.05), 但雌雄植株的径向生长无显著差异; 2)雌雄植株年轮最大密度和宽度差值年表的变化趋势具有一致性, 但在年轮最大密度差值年表的变化上雄株波动幅度大于雌株; 3)青杨雌雄植株年轮密度差值年表对温度响应的月份明显不同。雌株年轮最大密度与当年8月的月平均最高气温显著正相关, 而雄株年轮最大密度与当年1月和4月的气温负相关; 4)生长季前的气候变化对青杨雌雄植株的径向生长均有明显的限制作用。此外, 当年6月的高温对于早材生长的限制作用特别明显。上述结果表明, 雌雄异株植物在树木年轮生长方面对全球气候变暖可能具有不同的响应机制, 雌株比雄株更侧重于密度生长。  相似文献   

8.
《植物生态学报》2014,38(3):270
近年来逆境导致植物雌雄幼苗的生长出现差异被许多控制实验所证实, 而有关气候变化对雌雄异株植物成树生长的潜在影响尚未引起人们广泛的关注。为进一步揭示气候变化对雌雄植株树木径向和密度生长的不同影响, 该文通过树轮生态学的研究方法, 选择小五台山天然青杨(Populus cathayana)种群为研究对象, 对青杨雌雄植株近30年(1982-2011)的树轮生长特性及其与气候的相关性进行了分析。结果显示: 1)在近30年当地气温不断升高的气候条件下, 雌株的年轮最大密度和晚材平均密度均高于雄株(p < 0.05), 但雌雄植株的径向生长无显著差异; 2)雌雄植株年轮最大密度和宽度差值年表的变化趋势具有一致性, 但在年轮最大密度差值年表的变化上雄株波动幅度大于雌株; 3)青杨雌雄植株年轮密度差值年表对温度响应的月份明显不同。雌株年轮最大密度与当年8月的月平均最高气温显著正相关, 而雄株年轮最大密度与当年1月和4月的气温负相关; 4)生长季前的气候变化对青杨雌雄植株的径向生长均有明显的限制作用。此外, 当年6月的高温对于早材生长的限制作用特别明显。上述结果表明, 雌雄异株植物在树木年轮生长方面对全球气候变暖可能具有不同的响应机制, 雌株比雄株更侧重于密度生长。  相似文献   

9.
Aim Our main aim is to determine if ring‐width variations in Empetrum hermaphroditum reflect regional or local topoclimate signals in an alpine environment. In the case that topoclimate provides the dominant signal, a secondary aim is to link these to spatial distribution patterns of different vegetation types. Location The study area is situated in the middle alpine belt in the Vågåmo region, Central Norwegian Scandes. Sampling sites cover different topoclimates: ridges, north‐facing slopes and south‐facing slopes. Methods We constructed ring‐width chronologies of E. hermaphroditum for each type of microsite for the common period 1951–2004. Climate data were prepared on an hourly, daily and growing‐season time scale. Climate–growth relationships were evaluated using bivariate correlations and regression tree methods for continuous time‐series analyses. In addition, extreme growth anomalies (pointer years) were compared with the climate conditions in those years. The impact of water supply on wood anatomy was determined by correlating the conductive area (percentage of vessel per growth ring) with a running mean (sum) of 10‐day intervals for temperature and precipitation. Results This study indicates that mean summer (June–August) temperatures determine the width of the growth rings of E. hermaphroditum irrespective of topoclimate. The length of the growing season, which is the most differentiating climatic factor between microsites, does not substantially alter the anatomical ring structure. Microsite differences in mean growth rates are attributed to the higher frequency of warm days. Extremely warm days limit ring‐width development at south‐facing slopes, while plants at ridges and north‐facing slopes still benefit from higher temperatures. As a consequence, pointer years are not developed synchronously at all microsites. Vessel formation is affected by available moisture, especially in the later part of the growing season. Main conclusions Topoclimate induces slight modifications of annual growth‐ring increments of E. hermaphroditum at different microsites. In contrast to the distribution patterns of vegetation types that are determined by snow cover, growth‐ring variations are related to summer temperature conditions, and the prominent regional climate signal is still reflected at all microsites. This offers the opportunity to reconstruct climatic change in alpine regions from dwarf shrub ring‐width chronologies.  相似文献   

10.
The climate of western Nepal was reconstructed for the past 249 years using ring width and wood density of Abies spectabilis (D. Don) Spach from western Nepal. A total of 46 increment core samples were collected from 23 individual trees growing in an open A. spectabilis stand near timberline of 3850 m a.s.l. in Humla District, western Nepal. The core samples were subjected to densitometric analysis to obtain chronologies of ring width and three kinds of intra-annual bulk densities, i.e., minimum, maximum, and mean. Response analysis of tree-ring parameters with climate records revealed that the ring width was correlated negatively with March–May (pre-monsoon) temperature and positively with March–May precipitation, while the minimum density was correlated positively with March–July temperature and negatively with March–May precipitation. On the other hand, the maximum and mean densities were positively correlated with August–September and March–September temperatures, respectively. These results indicate that the ring width and minimum density are primarily controlled by the pre-monsoon temperature and precipitation, while the latewood density by the late monsoon temperature. Finally based on these results of the response analysis, a transfer function was established, with which March–September temperature was reconstructed for the past 249 years, which shows a warming trend from 1750s until approximately 1790, followed by cooling until 1810, then by a gradual warming trend extending to 1950, and a notable cold period continuing up to the present. No evidence of a consistent warming trend over the last century or two commonly appearing in higher latitudes was found in the present reconstruction, but possible factor behind the widespread glacial retreat in the Nepal Himalayas was discussed.  相似文献   

11.
The most frequently and successfully used tree-ring parameters for the study of temperature variations are ring width and maximum latewood density (MXD). MXD is preferred over ring width due to a more prominent association with temperature. In this study we explore the dendroclimate potential of dendroanatomy based on the first truly well replicated dataset. Twenty-nine mature living Pinus sylvestris trees were sampled in North-eastern Finland at the cool and moist boreal forest zone, close to the latitudinal tree line, where ring width, X-ray MXD as well as the blue intensity counterpart MXBI were compared with dendroanatomical parameters. Maximum radial cell wall thickness as well as anatomical MXD and latewood density appeared to be the most promising parameters for temperature reconstruction. In fact, these parameters compare favorably to MXD derived from X-ray techniques as well as MXBI, in terms of shared variation and temperature correlations across frequencies and over time. The reasons for these results are thought to be the unprecedentedly high measurement resolution of the anatomical technique, which provide the optimal resolution – the cell – whereas X-ray techniques have a slightly lower resolution and BI techniques even lower. While the results of this study are encouraging, further tests on longer and multigenerational chronologies are required to more generally and fully assess the dendroclimate potential of anatomical parameters.  相似文献   

12.
Wood material for at least 12 larch trees at six sites [Larix sibirica Ldb, Larix gmelinii (Rupr.) Rupr, Larix cajanderi Mayr] near the northern timberline in Siberia was analyzed to investigate influence of climatic factor changes on tree-ring growth at high latitudes. Tree-ring cell size, maximum latewood density and ring width measured by means of image analysis and X-ray radiodensitometry and calculated latewood cell-wall thickness were used. Correlation analysis of tree-ring structure parameter chronologies with temperatures averaged over periods of 5 days (pentad) shows that early summer temperature (mean for 5-6 pentads, depending on the region, starting from the middle of June) and date of snow melt are the most important factors that define seasonal growth and tree-ring structure. Analysis of instrumental climatic data indicates that a positive trend of early summer temperature was combined with winter precipitation (October-April) increase and this combination leads to later snow melt. Based of the results of tree-ring growth modelling, it was shown that later snow melt (hence, delayed initiation of cambial activity and, as a result, decrease of wood production) explains the changes in the relationship between tree ring width and summer temperature dynamics observed after the 1960s for a large area of the Siberian Subarctic. The understanding of the role of winter precipitation in controlling ring growth, through its effect on the timing of cambial activation, suggests the possibility of using ring structure parameters to create reconstructions of past winter precipitation variations.  相似文献   

13.
Aim Climate variability is an important mediating agent of ecosystem dynamics in cold, semi‐arid regions such as the mountains of western North America. Climatically sensitive tree‐ring chronologies offer a means of assessing the impact of climate variability on tree growth across temporal scales of years to centuries and spatial scales of metres to subcontinents. Our goal was to bring practices from landscape ecology that highlight the impact of landscape heterogeneity on ecological pattern and processes into a dendroclimatic study that shows that the biophysical setting of target trees affects ring‐width patterns. Location This study was conducted at two sites near alpine treeline in the Sequoia National Park, USA (36°30′ 00′ N, 118°30′ 00′ W). Methods We collected stand information and increment cores from foxtail pines (Pinus balfouriana Grev. et Balf.) for eight tree‐ring chronologies in four extreme biophysical settings at two sites using proxies for soil moisture and radiation derived from a digital elevation model. Results Biophysical setting affected forest age–class structure, with wet and bright plots showing high recruitment after 1900 ad , but had no obvious effect on immature stem density (e.g. seedlings). Biophysical setting strongly affected ring‐width patterns, with wet plots having higher correlation with instrumental temperature records while dry plots correlated better with instrumental precipitation records. Ring‐width chronologies from the wet plots showed strong low‐frequency variability (i.e. hundreds of years) while ring‐width chronologies from the dry plots showed strong variability on multidecadal scales. Main conclusions There was a strong association between biophysical setting and age‐class structure, and with ring‐width patterns in foxtail pine. The mediation of ring widths by biophysical setting has the potential to further the understanding of the expression of synoptic‐scale climate across rugged terrain. When combined with remotely sensed imagery, a priori GIS modelling of tree growth offers a viable means to devise first‐order predictions of climatic impacts in subalpine forest dynamics and to develop flexible and powerful monitoring schemes.  相似文献   

14.
Three tree-ring maximum latewood density chronologies were developed from high elevation Picea schrenkiana sites in the western Tien Shan Mountains using different detrending methods. The new chronologies extend back to the early 16th and late 17th centuries, and contain significant late spring and summer temperature signals, respectively. An assessment of varying detrending methods and band-pass filtering the chronologies revealed only slightly differing low frequency trends retained in the maximum latewood densities. The distance between sampling sites and the varying seasonality of limiting climatic factors are identified as key drivers affecting the correlation among the maximum latewood density records in the study region. The new chronologies represent reliable proxies of high elevation late spring and summer temperature variability in an area underrepresented by such data, and are ready-to-use for network analyses addressing longer-term climate variations in eastern central Asia.  相似文献   

15.
A tree-ring densitometric transect from Alaska to Labrador   总被引:1,自引:0,他引:1  
We describe a recently completed network of densitometric tree-ring time series representing various aspects of tree-growth for up to 200 years at 69 sites spread across the northern North American conifer zone from Yukon to Labrador. Duplicate cores, from 12 to 15 trees per site, provide time series for a suite of growth parameters including earlywood (spring), latewood (summer) and total (annual) ring widths and mean earlywood, mean latewood, minimum and maximum ring density. These data form the basis for extensive analyses of intra- and inter-site parameter comparisons and regional climate/tree-growth comparisons. Five large-scale regional chronologies do not suggest that any anomalous growth increases have occurred in recent decades, at least on these regional scales, despite the observed changes in atmospheric composition and climate.  相似文献   

16.
Summary Dendroclimatological techniques are used to assess the impact of climatic factors on tree-ring width of Larix decidua and L. decidua × L. kaempferi (= L. x eurolepis) growing in two experimental plots established in 1914 in south-west Poland. One plot included F1 progeny grown from seeds of an artificial crossing between European and Japanese larch. The other plot included progeny from maternal trees of European larch. Total ring width, earlywood width and latewood widths were dated, standardized and related to monthly climatic data using response function and stepwise multiple regression analyses. Wide rings in larch are associated with high precipitation in May–July, cool conditions in July–September of the preceding year, and cool dry conditions in August. Ring widths in L. x eurolepis are more dependent upon precipitation than ring widths in L. decidua. Latewood widths in L. x eurolepis are more dependent on high temperatures in June and July than latewood in L. decidua as well as total width and earlywood measurements. Variations in latewood were relatively independent of variations in earlywood and total wood. The variability of ring widths in these larches was greater than the variability reported for larches in many alpine sites and for other conifer species in some regions of North America.  相似文献   

17.
The response of non-native forest plantation trees to climate change remains poorly understood.We hypothesized that precipitation and temperature modulate tree-ring width chronology at each site and that higher tree growth is exhibited at remote sites than sites near copper mines. This study investigates if the annual tree-ring boundaries in non-native Pinus kesiya Royle ex Gordon in Zambia are distinct, cross-datable, and coherent with climate signal. We collected increment cores from live trees and climate data near and further away from emission sources and developed site tree-ring width chronologies. Based on cross-dating and chronology building statistics (i.e., ESP > 0.85; Glk > 0.6 and series inter-correlation > 0.4), P. kesiya posses cross-datable distinct annual growth ring boundaries that exhibited a high climate signal at both sites. The tree-ring width chronology was positively modulated by precipitation and negatively by solar radiation and temperature. The dry season precipitation was the limiting factor for the growth of P. kesiya. The predicted decrease in dry season precipitation and increase in temperature and solar radiation may reduce tree growth of P. kesiya, reduce productivity, and extend the rotation age. The mean ring width in P. kesiya was not significantly (p = 0.296) different between sites. However, the mean basal area increment at the site near the emission source (Ichimpe) was significantly (p < 0.001) higher than at the remote site (Chati), suggesting site-specific influences that require investigation. We recommend evaluating the causes and consequences of tree growth variation between sites and their relation to environmental variation, including microclimate, soils, and pollution. In this regard, an assessment of site-specific ring-width chronology and tree growth variation in this study directly contributes to an improved understanding of non-native P. kesiya ecology, and it offers the potential to study trees' responses to edaphic and climatic factors. Knowing these responses deepens our understanding of non-native pine tree growth in the face of climate change, given the significant role of tropical forests in the global carbon cycle.  相似文献   

18.
Tree-ring research in the highland tropics and subtropics represents a major frontier for understanding climate-growth relationships. Nonetheless, there are many lowland regions – including the South American Pampa biome – with scarce tree ring data. We present the first two tree-ring chronologies for Scutia buxifolia in subtropical Southeastern South America (SESA), using 54 series from 29 trees in two sites in northern and southern Uruguay. We cross-dated annual rings and compared tree growth from 1950 to 2012 with regional climate variability, including rainfall, temperature and the Palmer Drought Severity Index – PDSI, the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM). Overall, ring width variability was highly responsive to climate signals linked to water availability. For example, tree growth was positively correlated with accumulated rainfall in the summer-fall prior to ring formation for both chronologies. Summer climate conditions were key for tree growth, as shown by a negative effect of hot summer temperatures and a positive correlation with PDSI in late austral summer. The El Niño phase in late spring/early summer favored an increase in rainfall and annual tree growth, while the La Niña phase was associated with less rainfall and reduced tree growth. Extratropical climate factors such as SAM had an equally relevant effect on tree growth, whereby the positive phase of SAM had a negative effect over radial growth. These findings demonstrate the potential for dendroclimatic research and climate reconstruction in a region with scarce tree-ring data. They also improve the understanding of how climate variability may affect woody growth in native forests – an extremely limited ecosystem in the Pampa biome.  相似文献   

19.
A collection of subfossil wood of Pinus sylvestris (Scots pine) was exposed to X-ray densitometry. The collection of 64 samples from the southern boreal forest zone was dendrochronologically cross-dated to a.d. 673-1788. Growth characteristics were determined by performing density profiles including the following parameters: minimum density, earlywood and latewood boundary density, maximum density, earlywood width, earlywood density, latewood width, latewood density, annual ring width and annual ring density. Seven out of the nine parameters were found to contain non-climatic growth trends and six were found to be heteroscedastic in their variance. Tree-specific records were indexed, to remove the non-climatic growth trends and stabilize the variance, and combined into nine parameter-specific tree-ring chronologies. Growth characteristics of the pines changed in parallel with the generally agreed climatic cooling from the Medieval Warm Period to the Little Ice Age: pine tree-rings showed decreasing maximum densities from the period a.d. 975-1150 to a.d. 1450–1625. A concomitant change in the intra-annual growth characteristics was detected between these periods. The findings indicate that not only the trees growing near the species’ distributional limits are sensitive to large-scale climatic variations but also the trees growing in habitats remote from the timberline have noticeably responded to past climate changes.  相似文献   

20.
European larch trees grown outside their natural range were intensively studied in terms of their adaptability to increased late winter temperature. A total of 264 cores of larch were taken from 12 sites throughout northern Poland at sites outside of its natural range. Clustering of de-trended chronologies reveal that research sites are grouped geographically. The mean ring widths, however, are similar amongst the four regions. In total, 21?% of the single correlations for all months for tree-ring widths were significant at the 5?% error level. For earlywood and latewood, the figures are 18 and 19?%, respectively. A generally positive precipitation effect was found, however, no significant negative effect was observed. Temperature had mixed effects on ring width. Higher temperatures in late winter and early spring increased ring width in region 2. High summer temperatures in both the previous and the current year, on the other hand, generally had a negative impact on tree-ring width during the growing season. On most of the sites, the observed long-term trend for increasing temperatures in March had no significant negative influence on tree growth. The visual condition of European larch together with the lack of any negative response of tree rings to observed March temperature increase suggest that it may be beneficial to introduce this species into new areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号