首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arms races between brood parasites and their hosts provide model systems for studying the evolutionary repercussions of species interactions. However, how naive hosts identify brood parasites as enemies remains poorly understood, despite its ecological and evolutionary significance. Here, we investigate whether young, cuckoo-naive superb fairy-wrens, Malurus cyaneus, can learn to recognize cuckoos as a threat through social transmission of information. Naive individuals were initially unresponsive to a cuckoo specimen, but after observing conspecifics mob a cuckoo, they made more whining and mobbing alarm calls, and spent more time physically mobbing the cuckoo. This is the first direct evidence that naive hosts can learn to identify brood parasites as enemies via social learning.  相似文献   

2.
3.
Hosts of brood‐parasitic birds typically evolve anti‐parasitism defences, including mobbing of parasitic intruders at the nest and the ability to recognize and reject foreign eggs from their clutches. The Greater Honeyguide Indicator indicator is a virulent brood parasite that punctures host eggs and kills host young, and accordingly, a common host, the Little Bee‐eater Merops pusillus frequently rejects entire clutches that have been parasitized. We predicted that given the high costs of accidentally rejecting an entire clutch, and that the experimental addition of a foreign egg is insufficient to induce this defence, Bee‐eaters require the sight of an adult parasite near the nest as an additional cue for parasitism before they reject a clutch. We found that many Little Bee‐eater parents mobbed Greater Honeyguide dummies while ignoring barbet control dummies, showing that they recognized them as a threat. Surprisingly, however, neither a dummy Honeyguide nor the presence of a foreign egg, either separately or in combination, was sufficient to stimulate egg rejection.  相似文献   

4.
Sexual reproduction relies on the recognition of conspecifics for breeding. Most experiments in birds have implicated a critical role for early social learning in directing subsequent courtship behaviours and mating decisions. This classical view of avian sexual imprinting is challenged, however, by studies of megapodes and obligate brood parasites, species in which reliable recognition is achieved despite the lack of early experience with conspecifics. By rearing males with either conspecific or heterospecific brood mates, we experimentally tested the effect of early social experience on the association preferences and courtship behaviours of two sympatrically breeding ducks. We predicted that redheads (Aythya americana), which are facultative interspecific brood parasites, would show a diminished effect of early social environment on subsequent courtship preferences when compared with their host and congener, the canvasback (Aythya valisineria). Contrary to expectations, cross-fostered males of both species courted heterospecific females and preferred them in spatial association tests, whereas control males courted and associated with conspecific females. These results imply that ontogenetic constraints on species recognition may be a general impediment to the initial evolution of interspecific brood parasitism in birds. Under more natural conditions, a variety of mechanisms may mitigate or counteract the effects of early imprinting for redheads reared in canvasback broods.  相似文献   

5.
Evolution of host egg mimicry in a brood parasite, the great spotted cuckoo   总被引:1,自引:0,他引:1  
Brood parasitism in birds is one of the best examples of coevolutionary interactions in vertebrates. Coevolution between hosts and parasites is assumed to occur because the parasite imposes strong selection pressures on its hosts, reducing their fitness and thereby favouring counter-adaptations (e.g. egg rejection) which, in turn, select for parasite resistance (e.g. egg mimicry). Great spotted cuckoos ( Clamator glandarius ) are usually considered a brood parasite with eggs almost perfectly mimicking those of their host, the magpie ( Pica pica ). However, Cl. glandarius also exploits South African hosts with very different eggs, both in colour and size, while the Cl. glandarius eggs are similar to those laid in nests of European hosts. Here, we used spectrophotometric techniques for the first time to quantify mimicry of parasitic eggs for eight different host species. We found: (1) non-significant differences in appearance of Cl. glandarius eggs laid in nests of different host species, although eggs laid in South Africa and Europe differed significantly; (2) contrary to the general assumption that Cl. glandarius eggs better mimic those of the main host in Europe ( P. pica ), Cl. glandarius eggs more closely resembled those of the azure-winged magpie ( Cyanopica cyana ), a potential host in which there is no evidence of recent parasitism; (3) the appearance of Cl. glandarius eggs was not significantly related to the appearance of host eggs. We discuss three possible reasons why Cl. glandarius eggs resemble eggs of some of their hosts. We suggest that colouration of Cl. glandarius eggs is an apomorphic trait, and that variation between eggs laid in South African and European host nests is due to genetic isolation among these populations and not due to variation in colouration of host eggs.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 551–563.  相似文献   

6.
Avian brood parasites have evolved striking begging abilitythat often allows them to prevail over the host progeny in competitionfor parental resources. Host young are therefore selected bybrood parasites to evolve behavioral strategies that reducethe cost of parasitism. We tested the prediction that the intensityof nestling begging displays functioning to attract parentalcare increases across species with the frequency of parasitismby the brown-headed cowbird (Molothrus ater). This was expectedbecause host young should try to prevail over highly competitiveparasitic broodmates in scramble interactions, act more selfishlywhen frequency of parasitism is high because brood parasitesoften affect more severely host condition than conspecific broodmates,and discount the kin selection costs of subtracting resourcesto unrelated parasites. Across 31 North American host species,begging loudness positively covaried with parasitism rate inPasserines, and such effect was stronger in species with smallcompared with large clutches. Begging loudness increased withbrood parasitism and nest predation among the most suitablehost species. These results held after controlling for concomitantecological factors and for common ancestry effects. Our resultssupport the hypothesis that avian brood parasitism has playeda role in the evolution of begging behavior of host young.  相似文献   

7.
Coevolutionary theory predicts that the most common long‐term outcome of the relationships between brood parasites and their hosts should be coevolutionary cycles based on a dynamic change selecting the currently least‐defended host species, given that when well‐defended hosts are abandoned, hosts will be selected to decrease their defences as these are usually assumed to be costly. This is assumed to be the case also in brood parasite‐host systems. Here I examine the frequency of the three potential long‐term outcomes of brood parasite–host coevolution (coevolutionary cycles, lack of rejection, and successful resistance) in 182 host species. The results of simple exploratory comparisons show that coevolutionary cycles are very scarce while the lack of rejection and successful resistance, which are considered evolutionary enigmas, are much more frequent. I discuss these results considering (i) the importance of different host defences at all stages of the breeding cycle, (ii) the role of phenotypic plasticity in long‐term coevolution, and (iii) the evolutionary history of host selection. I suggest that in purely antagonistic coevolutionary interactions, such as those involving brood parasites and their hosts, that although cycles will exist during an intermediate phase of the interactions, the arms race will end with the extinction of the host or with the host acquiring successful resistance. As evolutionary time passes, this resistance will force brood parasites to use previously less suitable host species. Furthermore, I present a model that represents the long‐term trajectories and outcomes of coevolutionary interactions between brood parasites and their hosts with respect to the evolution of egg‐rejection defence. This model suggests that as an increasing number of species acquire successful resistance, other unparasitized host species become more profitable and their parasitism rate and the costs imposed by brood parasitism at the population level will increase, selecting for the evolution of host defences. This means that although acceptance is adaptive when the parasitism rate and the costs of parasitism are very low, this cannot be considered to represent an evolutionary equilibrium, as conventional theory has done to date, because it is not stable.  相似文献   

8.
Avian obligate brood parasites, which rely solely on hosts to raise their young, should choose the highest quality hosts to maximize reproductive output. Brown-headed cowbirds (Molothrus ater) are extreme host generalists, yet female cowbirds could use information based on past reproductive outcomes to make egg-laying decisions thus minimizing fitness costs associated with parasitizing low-quality hosts. We use a long-term (21 years) nest-box study of a single host, the prothonotary warbler (Protonotaria citrea), to show that local cowbird reproductive success, but not host reproductive success, was positively correlated with the probability of parasitism the following year. Experimental manipulations of cowbird success corroborated that female cowbirds make future decisions about which hosts to use based on information pertaining to past cowbird success, both within and between years. The within-year pattern, in particular, points to local cowbird females selecting hosts based on past reproductive outcomes. This, coupled with high site fidelity of female cowbirds between years, points to information use, rather than cowbird natal returns alone, increasing parasitism rates on highly productive sites between years.  相似文献   

9.
Mimicry of a harmless model (aggressive mimicry) is used by egg, chick and fledgling brood parasites that resemble the host''s own eggs, chicks and fledglings. However, aggressive mimicry may also evolve in adult brood parasites, to avoid attack from hosts and/or manipulate their perception of parasitism risk. We tested the hypothesis that female cuckoo finches (Anomalospiza imberbis) are aggressive mimics of female Euplectes weavers, such as the harmless, abundant and sympatric southern red bishop (Euplectes orix). We show that female cuckoo finch plumage colour and pattern more closely resembled those of Euplectes weavers (putative models) than Vidua finches (closest relatives); that their tawny-flanked prinia (Prinia subflava) hosts were equally aggressive towards female cuckoo finches and southern red bishops, and more aggressive to both than to their male counterparts; and that prinias were equally likely to reject an egg after seeing a female cuckoo finch or bishop, and more likely to do so than after seeing a male bishop near their nest. This is, to our knowledge, the first quantitative evidence for aggressive mimicry in an adult bird, and suggests that host–parasite coevolution can select for aggressive mimicry by avian brood parasites, and counter-defences by hosts, at all stages of the reproductive cycle.  相似文献   

10.
Avian brood parasites reduce the reproductive output of their hosts and thereby select for defence mechanisms such as ejection of parasitic eggs. Such defence mechanisms simultaneously select for counter-defences in brood parasites, causing a coevolutionary arms race. Although coevolutionary models assume that defences and counter-defences are genetically influenced, this has never been demonstrated for brood parasites. Here, we give strong evidence for genetic differences between ejector and nonejectors, which could allow the study of such host defence at the genetic level, as well as studies of maintenance of genetic variation in defences. Briefly, we found that magpies, that are the main host of the great spotted cuckoo in Europe, have alleles of one microsatellite locus (Ase64) that segregate between accepters and rejecters of experimental parasitic eggs. Furthermore, differences in ejection rate among host populations exploited by the brood parasite covaried significantly with the genetic distance for this locus.  相似文献   

11.
A game theoretical approach to conspecific brood parasitism   总被引:1,自引:0,他引:1  
We constructed a game theoretical model to predict optimal patternsof egg laying in systems where individuals lay in the nestsof others as well as in their own nests. We show that decreasingthe effect of position within an egg-laying sequence on theworth of an egg should lead to reduced parasitism. Indeed,parasitism can only flourish if the worth of an egg to its biological parent declines with the total number of eggs laid in that nest.Further, we found that increasing the intrinsic costs of eggproduction should lead to an increased propensity for conspecificbrood parasitism. The model also predicts that variation inhosts' ability to reject parasitic eggs has little effect on parasitism until this ability is well developed.  相似文献   

12.
Passerine hosts of parasitic cuckoos usually vary in their abilityto discriminate and reject cuckoo eggs. Costs of discriminationand rejection errors have been invoked to explain the maintenanceof this within-population variability. Recently, enforcementof acceptance by parasites has been identified as a rejectioncost in the magpie (Pica pica) and its brood parasite, the greatspotted cuckoo (Clamator glandarius). Previous experimentalwork has shown that rejecter magpies suffer from increased nestpredation by the great spotted cuckoo. Cuckoo predatory behavioris supposed to confer a selective advantage to the parasitebecause magpies experiencing a reproductive failure may providea second opportunity for the cuckoo to parasitize a replacementclutch. This hypothesis implicitly assumes that magpies modulatetheir propensity to reject parasite eggs as a function of previousexperience. We tested this hypothesis in a magpie populationbreeding in study plots varying in parasitism rate. Magpie pairs thatwere experimentally parasitized and had their nests depredated,after their rejection behavior had been assessed, changed theirbehavior from rejection to acceptance. The change in host behaviorwas prominent in study plots with high levels of parasitism,but not in plots with rare or no cuckoo parasitism. We discussthree possible explanations for these differences, concludingthat in study plots with a high density of cuckoos, the probability fora rejecter magpie nest of being revisited and depredated bya cuckoo is high, particularly for replacement clutches, and,therefore, the cost for magpies of rejecting a cuckoo egg ina replacement clutch is increased. Moreover, in areas with highlevels of host defense (low parasitism rate), the probabilityof parasitism and predation of rejecter-magpie nests by thecuckoo is reduced in both first and replacement clutches. Therefore,rejecter magpies in such areas should not change their rejectionbehavior in replacement clutches.  相似文献   

13.
Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity.  相似文献   

14.
Vocalizations produced by developing young early in life have simple acoustic features and are thought to be innate. Complex forms of early vocal learning are less likely to evolve in young altricial songbirds because the forebrain vocal‐learning circuit is underdeveloped during the period when early vocalizations are produced. However, selective pressure experienced in early postnatal life may lead to early vocal learning that is likely controlled by a simpler brain circuit. We found the food begging calls produced by fledglings of the brown‐headed cowbird (Molothrus ater), a generalist avian brood parasite, induced the expression of several immediate early genes and early circuit innervation in a forebrain vocal‐motor pathway that is later used for vocal imitation. The forebrain neural activity was correlated with vocal intensity and variability of begging calls that appears to allow cowbirds to vocally match host nestmates. The begging‐induced forebrain circuits we observed in fledgling cowbirds were not detected in nonparasitic passerines, including species that are close relatives to the cowbird. The involvement of forebrain vocal circuits during fledgling begging and its association with vocal learning plasticity may be an adaptation that provides young generalist brood parasites with a flexible signaling strategy to procure food from a wide range of heterospecific host parents. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 615–625, 2016  相似文献   

15.
Obligate avian brood parasites can be host specialists or host generalists. In turn, individual females within generalist brood parasites may themselves be host specialists or generalists. The shiny cowbird Molothrus bonariensis is an extreme generalist, but little is known about individual female host fidelity. We examined variation in mitochondrial control region sequences from cowbird chicks found in nests of four common Argentinean hosts. Haplotype frequency distributions differed among cowbird chicks from nests of these hosts, primarily because eggs laid in nests of house wrens Troglodytes aedon differed genetically from those laid in nests of the other three hosts (chalk-browed mockingbird Mimus saturninus, brown-and-yellow marshbird Pseudoleistes virescens, and rufous-collared sparrow Zonotrichia capensis). These differences in a maternally inherited marker indicate the presence of a nonrandom laying behaviour in the females of this otherwise generalist brood parasite, which may be guided by choice for nest type, as house wrens nest in cavities whereas the other three species are open cup nesters.  相似文献   

16.
Canvasback ducks (Aythya valisineria) suffer both intra- andinterspecific brood parasitism. During 3 years in Manitoba,80% of canvasback nests (n = 179 nests with completed clutches)were parasitized by redheads (A. americana), other canvasbacks,or both, with an average of 4.7 parasitic eggs per parasitizednest. Parasitism had significant negative effects on the reproductivesuccess of nesting canvasbacks, although the proximate mechanismsinvolved differed from those operating in altricial species.Accidental displacement of eggs when parasitic females forcedtheir way onto host nests was the principal negative effectof parasitism, reducing the number of host eggs that were incubatedand ultimately hatched. Parasitism by redheads was relativelymore costly to canvasbacks than was intraspecific parasitism,with approximately 0.31 and 0.17 host eggs displaced per parasiticredhead and canvasback egg laid, respectively. No additionalnegative effects of parasitism on the hatchability of host eggsoccurred subsequent to parasitic laying. Posthatch survivalof canvasback ducklings was lower in broods from parasitizednests but was unrelated to the presence or absence of redheadducklings. Canvasback hosts resisted intrusions by parasiticfemales but showed no evidence of discrimination against parasiticeggs or ducklings. Because most costs of parasitism in thissystem are inflicted at the time of parasitic laying, subsequentrejection of parasitic eggs or ducklings is probably of littlebenefit to canvasback hosts, while the evolution of behaviorthat might prevent parasitic laying in the first place, suchas more vigorous nest defense, may be constrained by its highcosts  相似文献   

17.
Coevolution of an avian host and its parasitic cuckoo   总被引:1,自引:0,他引:1  
Abstract We use a quantitative genetic model to examine the coevolution of host and cuckoo egg characters (termed "size" as a proxy for general appearance), host discrimination, and host and cuckoo population dynamics. A host decides whether to discard an egg using a comparison of the sizes of the eggs in her nest, which changes as host and cuckoo eggs evolve. Specifically, we assume that the probability that she discards the largest egg in her nest depends on how much larger it is than the second largest egg. This decision rule (i.e., the acceptable difference in egg sizes) also evolves, changing both the chance of successful rejection of a cuckoo egg in parasitized nests and the chance of mistaken rejection of a host egg in both parasitized and unparasitized nests. We find a stable equilibrium for coexistence of the host and cuckoo where there is cuckoo egg mimicry, evolutionary displacement of the host egg away from the cuckoo egg phenotype, and host discrimination against unusual eggs. Both host discrimination and host egg displacement are fairly weak at the equilibrium. Cuckoo egg mimicry, although imperfect, usually evolves more extensively and quickly than the responses of the host. Our model provides evidence for both the evolutionary equilibrium and evolutionary lag hypotheses of host acceptance of parasitic eggs.  相似文献   

18.
The allocation of resources to young that will ultimately beleft to die appears counterintuitive. Yet obligate brood reductionhas evolved in a number of species, despite the waste of reproductiveinvestment this may incur. Here we test whether brood parasitismcould be one factor leading to the evolution of obligate broodreduction because surplus eggs in the nest during incubationoffer some protection from the costs of parasitism. Surpluseggs could benefit females in two ways. First, additional eggsmay protect against the direct costs of parasitism by facilitatingrecognition and removal of parasitic eggs with greater accuracy.Second, additional eggs may protect against the indirect costsof parasitism as parasites often damage or remove host eggswhen entering the host nest; surplus eggs may be an essentialinsurance strategy against this damage. We test these possibilitiesin the Montezuma Oropendola (Psarocolius Montezuma), a speciesexperiencing high levels of parasitism by Giant Cowbirds (Scaphiduraoryzivora) throughout their range. Overall rejection rates ofcowbird eggs were high (72%), and experimental addition of parasiticeggs to empty, one-, and two-egg nests demonstrated that recognitionsuccess was unaffected by the presence of additional host eggsfor comparison. However, the value of surplus eggs when oneegg was removed or damaged by a parasite was high; 31.6% ofsuccessful two-egg clutches lost a single egg during incubationand would have failed to produce a chick without a second egg.This was directly attributable to parasitism in at least 33%of all cases. Therefore, despite highly developed host defensesagainst direct costs of parasitism (recognition and removalof parasitic eggs), the associated indirect costs (egg damageand removal) could play an important role in selection for aclutch size that results in more chicks than can be raised.  相似文献   

19.
Coevolutionary hypotheses (COEV) predict that parasitic birdsbecome more specialized in host selection over time as morehost species evolve defenses. A contrasting model, PHYLO, suggeststhat brood parasites exhibit a phylogenetic trajectory towardincreasing generalization because there is a positive correlationbetween present-day numbers of host species and the branchingorder of parasitic cowbird species in a DNA-based phylogeny. However, this apparent phylogenetic pattern does not conflictwith COEV, as some have concluded. Assuming allopatric speciation,which is supported by an area cladogram, COEV predicts a correlationbetween branching order and host number because the potentialhosts of the earliest cowbirds to branch off have had the greatestamount of time to evolve defenses. Although PHYLO is more parsimoniousthan COEV, the difference is trivial, with the latter requiring only one more evolutionary change in the entire cowbird cladeto produce the pattern that exists today. Support for COEVover PHYLO comes from brood parasitic cuckoos, which are muchmore specialized than parasitic cowbirds and represent an olderclade, as shown by new DNA data. Cuckoos also have lower interspecificvariance in host numbers than do cowbirds, which conflicts with PHYLO. Unlike COEV, which assumes that the number of hosts aparasite uses is related at least as much to present ecologicalconditions as to phylogenetic history, PHYLO assumes that currenthost numbers reflect historical character states. However,host number is labile, with as much variation within as betweenspecies. Nor are published host numbers reliable measures ofparasite host selectivity, as they are due in part to researchereffort and range size. Although the comparative approach canprovide insights into evolutionary history, some coevolvedfeatures may be too dynamic to retain a phylogenetic signature,and, in the case of parasitic birds, neither PHYLO nor COEVcan be invalidated, although the latter is more consistentwith available evidence. Strict adherence to parsimony mayoften be inappropriate when assessing coevolved characters.  相似文献   

20.
A long-term study of the interactions between a brood parasite, the great spotted cuckoo Clamator glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of both mimetic and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive mechanisms: nest density and breeding synchrony increased dramatically and rejection rate of cuckoo eggs increased more slowly. A stepwise multiple regression analysis showed that parasitism rate decreased as host density increased and cuckoo density decreased. A logistic regression analysis indicated that the probability of changes in magpie nest density in the study plots was significantly affected by the density of magpie nests during the previous year (positively) and the rejection rate of mimetic model eggs (negatively). These results are consistent with a hypothesis (the intermittent arms race hypothesis) of spatially structured cyclic changes in parasitism. During periods of parasitism, host defences continuously improve, and as a consequence, the fitness gains for parasites decrease. When host defences against parasites reach a high level, dispersing parasites have a selective advantage if they are able to emigrate to areas of low resistance. Once parasites have left an area hosts will lose their defensive adaptations due to their cost in the absence of parasitism. The scene is then set for re-colonization by great spotted cuckoos. Received: 7 May 1998 / Accepted: 24 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号