首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dormant spores of Bacillus megaterium contained no detectable reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) despite significant levels of the oxidized forms of these nucleotides (NAD and NADP). During the first minutes of spore germination there was rapid accumulation of NADH and NADPH. However, this accumulation followed the fall in optical density that is characteristic of the initiation of spore germination. Accumulation of NADH and NADPH early in germination was not blocked by fluoride or cyanide, and it occurred even when germination was carried out in the absence of an exogenous source of reducing power. In addition to pyridine nucleotide reduction, de novo synthesis also began early in germination as the pyridine nucleotide levels increased to those found in growing cells. Midlog-phase cells grown in several different media had 20 to 35 times as much total pyridine nucleotide as did dormant spores. However, as growth and sporulation proceeded, the NADH plus NAD level fell four- to fivefold whereas the NADPH plus NADP level fell by a lesser amount. From min 10 of spore germination until midway through sporulation the value for the ratio of NADH/NAD is about 0.1 (0.03 to 0.18) while the ratio of NADPH/ANDP is about 1.4 (0.3 to 2.4). Comparison of these ratios in log-phase versus stationary phase (sporulation) growth in all three growth media tested did not reveal any common pattern of changes.  相似文献   

2.
Summary Gastric fundic metabolism was studied by spectroscopic observation in frog mucosa during transitions of secretory status in vitro and by direct measurement of pyridine nucleotides and associated metabolites in biopsies of dog fundic mucosa also during secretory oxidation of the redox components from flavin adenine dinucleotide (FAD) to cytochromea 3. Addition of histamine resulted in reduction of these components with onset of secretion by about 50%. In contrast, the effect of apparently, burimamide and subsequently histamine on the ratio of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide, reduced (NAD+/NADH) was relatively slight. Further, the presence of burimamide substantially reduces the effect of amytal on the pyridine nucleotide spectrum and abolishes the effect of amytal on FAD and the cytochromes. Measurements of lactate, pyruvate, -ketoglutarate, NH3 and glutamate in the dog showed that whereas the calculated NAD+/NADH ratio in the cytoplasm declined with onset of secretion, the calculated mitochondrial ratio rose. No change was noted in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate, reduced (NADP+/NADPH) ratio. It is concluded that (1) H2 antagonists act by blocking substrate flow into the mitochondrial respiratory chain, (2) conversely, histamine stimulation acts at the level of substrate mobilization, and (3) there may be a cross-over in the mitochondrial chain between NAD+ and FAD.  相似文献   

3.
The effect of variation in the concentration of inorganic phosphate and of the pyridine precursors nicotinamide (NAm) and nicotinic acid (NA) on pyridine nucleotide synthesis was studied using intact human erythrocytes. A wide range of incubation times was employed. The results showed that under physiological conditions the rate of synthesis of NAD from NAm exceeded that from NA twofold, while the reverse situation pertained at higher and unphysiological substrate levels. The two pathways had different regulation points. For NAm the rate-limiting factor was the initial step, namely its conversion into the mononucleotide, while for NA it lay at the second step, conversion of NA mononucleotide (NAMN) to its adenine dinucleotide. At physiological substrate levels the uptake of NA and conversion to NAMN were rapid, while the uptake and conversion of NAm were time dependent. This process was stimulated significantly by inorganic phosphate only for NAm. These results indicate that while NA is the predominant precursor of human erythrocyte NAD at high (unphysiological) substrate and phosphate levels, NAm is more efficient as an NAD precursor under physiological conditions, suggesting an important and hitherto unrecognized role for nicotinamide in NAD synthesis in vivo.  相似文献   

4.
Sulfate-reducing pathway in Escherichia coli involving bound intermediates.   总被引:14,自引:11,他引:3  
Although a sulfate-reducing pathway in Escherichia coli involving free sulfite and sulfide has been suggested, it is shown that, as in Chlorella, a pathway involving bound intermediates is also present. E. coli extracts contained a sulfotransferase that transferred the sulfonyl group from a nucleosidephosphosulfate to an acceptor to form an organic thiosulfate. This enzyme was specific for adenosine 3'-phosphate 5'-phosphosulfate, did not utilize adenine 5'-phosphosulfate, and transferred to a carrier molecule that was identical with thioredoxin in molecular weight and amino acid composition. In the absence of thioredoxin, only very low levels of the transfer of the sulfo group to thiols was observed. As in Chlorella, thiosulfonate reductase activity that reduced glutathione-S-SO3- to bound sulfide could be detected. In E. coli, this enzyme used reduced nicotinamide adenine dinucleotide phosphate and Mg2+, but did not require the addition of ferredoxin or ferredoxin nicotinamide adenine dinucleotide phosphate reductase. Although in Chlorella the thiosulfonate reductase appears to be a different enzyme from the sulfite reductase, the E. coli thiosulfonate reductase and sulfite reductase may be activities of the same enzyme.  相似文献   

5.
A rapid thin-layer chromatographic procedure for separation of the compounds comprising the intermediates in the salvage pathway known as the pyridine nucleotide cycle plus quinolinic acid and the reduced forms of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate is described. The method utilizes silica gel high-performance thin-layer plates and a mobile phase of methanol, tetrabutylammonium hydroxide, and acetonitrile. The time required for analysis is greatly reduced and results in greater than 96% purity of each migrating compound.  相似文献   

6.
The reduction of the melilotate hydroxylase . 2-OH-phenyl propionate complex by NADH and reduced 3-acetyl pyridine adenine dinucleotide (AcPyNADH) has been investigated using steady state kinetic and rapid reaction techniques. Reduction by NADH appeared to involve only one charge-transfer-type intermediate (between reduced enzyme and NAD) as previously described (Strickland, S., and Massey, V. (1973) J. Biol. Chem. 248, 2953-2962). Reduction by AcPyNADH was shown to involve two charge-transfer-type intermediates. The first was between oxidized enzyme and AcPyNADH and the second was between reduced enzyme and AcPyNAD. Reaction of AcPyNADH with oxidized enzyme . 2-OH-phenyl propionate complex to form the first charge-transfer complex reached equilibrium within the mixing time of the stopped flow apparatus (5 ms). Subsequent steps in the reaction appeared to be first order and were independent of the AcPyNADH concentration. An 8-fold deuterium isotope effect on the step involving flavin reduction was found when reduced 3-acetyl[4A-2H]pyridine adenine dinucleotide (AcPyNADD) was used as the reductant. Analysis of the rapid reaction results for the reaction of oxidized pyridine nucleotide with reduced enzyme . 2-OH-phenyl propionate complex indicated the presence of two forms of reduced enzyme (in equilibrium) of which only one form was capable of reacting with the oxidized pyridine nucleotide. Based on the rapid reaction data, a mechanism for the reduction half-reaction is proposed. The turnover number calculated from this mechanism is in good agreement with that determined from the steady state data.  相似文献   

7.
The obligate photoautotrophic cyanobacterium Synechococcus PCC7942 and the photoheterotrophic heterocystous cyanobacterium Noctoc muscorum are able to reduce prochiral ketones asymmetrically to optical pure chiral alcohols without light. An example is the synthesis of S-pentafluoro(phenyl-)ethanol with an enantiomeric excess >99% if 2′-3′-4′-5′-6′-pentafluoroacetophenone is used as substrate. If no light is available for regeneration of the cofactor nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH), glucose is used as cosubstrate. Membrane disintegration during asymmetric reduction promotes cytosolic energy generating metabolic pathways. Observed regulatory effects depicted by an adenosine triphosphate (ATP) to nicotinamide adenine dinucleotide phosphate (oxidized form) (NADP+) ratio of 3:1 for efficient cofactor recycling indicate a metabolization via glycolisis. The stoichiometric formation of the by-product acetate (1 mol acetate/1 mol chiral alcohol) indicates homoacetic acid fermentation for cofactor regeneration including the obligate photoautotrophic cyanobacterium Synechococcus PCC7942.  相似文献   

8.
delta1-Pyrroline-5-carboxylate (PCA) reductase [L-proline:NAD(P)+5-oxidoreductase, EC 1.5.1.2] has been purified over 200-fold from Escherichia coli K-12. It has a molecular weight of approximately 320,000. PCA reductase mediates the pyridine nucleotide-linked reduction of PCA to proline but not the reverse reaction (even at high substrate concentrations). The partially purified preparation is free of competing pyridine nucleotide oxidase, PCA dehydrogenase, and proline oxidase activities. The Michaelis constant (Km) values for the substrate, PCA, with reduced nicotinamide adenine dinucleotide phosphate (NADPH) or NADH as cofactor are 0.15 and 0.14 mM, respectively. The Km values determined for NADPH and NADH are 0.03 and 0.23 mM, respectively. Although either NADPH or NADH can function as cofactor, the activity observed with NADPH is severalfold greater. PCA reductase is not repressed by growth in the presence of proline, but it is inhibited by the reaction end products, proline and NADP.  相似文献   

9.
Synthesis of l-carnitine has been carried out by the enzymatic reduction of the carbonyl group of the achiral precursor 3-dehydrocarnitine with the oxidized nicotinamide adenine dinucleotide-linked carnitine dehydrogenase. Various enzymatic or chemical systems have been tested to regenerate the reduced nicotinamide adenine dinucleotide oxidized in the reduction of 3-dehydrocarnitine. Because of the instability of this compound in aqueous solutions, it was added by continuous feeding as a rate-limiting constituent in the reaction mixture. Under these conditions, conversion yields of 95% were achieved with the glucose plus glucose dehydrogenase system. A total number of 530 reduced nicotinamide adenine dinucleotide recyclings was obtained with this system for a production of 45 g of l-carnitine per liter. The stabilities of the oxidized nicotinamide adenine dinucleotide and the reduced nicotinamide adenine dinucleotide have been determined at various pH values. In view of these results, several possible strategies for enzymatic syntheses with the reduced nicotinamide adenine dinucleotide as a regenerable coenzyme are discussed.  相似文献   

10.
Extracts of a fluorescent species of Pseudomonas grown with m-cresol, degrade gentisic acid without isomerization of the ring-fission compound, maleylpyruvate, to give eventually d-malate and pyruvate. d-Malate is also a growth substrate. l-Malate but not d-malate is oxidized by a particulate enzyme not requiring nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP). NAD- or NADP-linked malate dehydrogenases are absent but cells contain an NADP-dependent l-malic enzyme. Exposure of cells to exogenous d-malate induces an NAD-dependent d-malic enzyme, not present when d-malate is formed endogenously. Succinate- or m-cresol-grown cells, containing no d-malic enzyme, rapidly oxidize d-malate in the presence of chloramphenicol at a concentration suffient to inhibit protein synthesis. An NADP-dependent cell-free system, prepared from succinate-grown cells which oxidized d-malate, is described.  相似文献   

11.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

12.
Various properties of the bacteriophage structural dihydrofolate reductase (DFR) have been examined to determine its function during phage infection. It has been found that a binding site for reduced nicotinamide adenine dinucleotide phosphate (NADPH), most likely on the DFR present in the phage tail plate, is required for phage viability. Attachment of adenosine diphosphoribose, an analogue of NADPH, to this site prevents phage adsorption and injection. This adenosine diphosphoribose inhibition can be competitively reversed by the addition of NADPH or oxidized nicotinamide adenine dinucleotide phosphate. It is suggested that, during phage infection, the host bacterial cell might leak compounds functionally similar to the pyridine nucleotides. These compounds have been shown to nonenzymatically change the conformation of the phage tail plate DFR which is apparently necessary for successful injection.  相似文献   

13.
A coupled-enzyme assay for determining viral neuraminidase activity is described. All reactants-viral neuraminidase, the initial substrate (fetuin), N-acetylneuraminic acid aldolase, lactic acid dehydrogenase, and reduced nicotinamide adenine dinucleotide-are combined in a single cuvette. Thus, in a single coupled system neuraminidase releases N-acetylneuraminic acid, which is cleaved to N-acetyl-D-mannosamine and pyruvic acid; finally, pyruvate is reduced to lactate as reduced nicotinamide adenine dinucleotide is oxidized. The rate of change of absorbance at 340 nm, as reduced nicotinamide adenine dinucleotide is oxidized, is a measure of the rate of reaction of the coupled system. This procedure, which measures the rate of release of N-acetylneuraminic acid by neuraminidase, is an alternate method for those procedures which require multistep, colorimetric determinations.  相似文献   

14.
The antifungal antibiotic flavensomycin inhibited the oxidation of amino acids and of glucose by Penicillium oxalicum. The compound inhibited l-amino acid oxidase (EC 1.4.3.2) activity for l-leucine and l-phenylalanine, and also d-amino acid oxidase (EC 1.4.3.3) in the oxidation for dl-alanine. The addition of flavin adenine dinucleotide, which is a cofactor for this enzyme, antagonized the action of the antibiotic. Glucose oxidase (EC 1.1.3.4) was also inhibited. The antibiotic inhibited the reduced nicotinamide adenine dinucleotide (NADH(2)) cytochrome c reductase (EC 1.6.2.1) as well as the much slower nonenzymatic reduction of this cytochrome by the nucleotide. Reduced cytochrome c was also oxidized nonenzymatically by flavensomycin. The antibiotic completely inhibited the action of rabbit muscle lactic dehydrogenase (EC 1.1.1.27) in promoting the reduction of pyruvate by NADH(2) but only slightly affected the reverse reaction. Alcohol dehydrogenase (EC 1.1.1.1) was also similarly inhibited. Flavensomycin prevented the reduction of nicotinamide adenine dinucleotide phosphate by isocitrate in the presence of isocitrate dehydrogenase (EC 1.1.1.42). The hexokinase (EC 2.7.1.1)-catalyzed phosphorylation of glucose, in which the adenosine triphosphate acts as a phosphate donor, was only slightly affected. Flavensomycin also inhibited the action of yeast lactate dehydrogenase (EC 1.1.2.3) on the reduction of cytochrome c. High concentrations of cytochrome c were antagonistic to this reaction. The results point to an interference with enzymatically controlled hydrogen or electron transfer as the mechanism of the antifungal activity of flavensomycin.  相似文献   

15.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

16.
Yeast glutathione reductase catalyzes a pyridine nucleotide transhydrogenase reaction using either NADPH or NADH as the electron donor and thionicotinamideadenine dinucleotide phosphate as the electron acceptor. Competitive substrate inhibition of the transhydrogenase reaction by NADPH (Ki = 11 μM) is observed when NADPH is the electron donor. Competitive substrate inhibition by thionicotinamide-adenine dinucleotide phosphate (Ki = 58 μM) is observed with NADH as the electron donor. The turnover numbers of the two transhydrogenase reactions are similar and are equal to about 1% of the turnover number for the NADPH-dependent reduction of oxidized glutathione catalyzed by the enzyme. The transhydrogenase kinetics are analyzed in terms of a pingpong mechanism. It is concluded that the substrate inhibition results from formation of abortive complexes of NADPH with the reduced form of the enzyme and of thionicotinamide-adenine dinucleotide phosphate with the oxidized form of the enzyme. With NADPH as the electron donor, the apparent Michaelis constant for thionicotinamide-adenine dinucleotide phosphate is sensitive to the ionic composition of the assay medium. The data are interpreted to support the existence of a general pyridine nucleotide-binding site at the active site of the enzyme and separate from the binding site for oxidized glutathione.  相似文献   

17.
Cat and rat brain monoamine oxidase (MAO) activity was measured with a radioisotopic procedure and two extraction methods. Results indicated an underestimation of MAO activity when liquid ion exchange chromatography (LIEC) was used instead of an ion exchange chromatographic method (IEC) to separate the different products of the deaminated tyramine, phenylethylamine, or serotonin. MAO produced aldehydic products which may be found in the incubation medium and may be extracted with the substrate in the chloroform phase by the LIEC method. In cat brain, the resulting underestimation of the MAO activity was prevented by the addition of nicotinamide adenine dinucleotide (10(-3) M) in the incubation medium or by allowing a 2-h period between the end of incubation and the LIEC extraction procedure. In the rat brain, the same result was obtained by the addition of an equimolar mixture of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate in reduced form (NAD-NADPH, 10(-3) M). Using the IEC method, the NAD decreased only the deamination of tyramine and serotonin in rat brain. This study suggests that the use of an IEC method to evaluate MAO activity is more accurate for the estimation of the enzymatic activity.  相似文献   

18.
A one-pot synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4F) is presented, where x=1, 2, or 3 represents hydrogen, deuterium, or tritium, respectively. The current procedure offers high-yield, high-purity, and microscale-quantity synthesis. In this procedure, two enzymes were used simultaneously in the reaction mixture. The first was Thermoanaerobium brockii alcohol dehydrogenase, which stereospecifically catalyzed a hydride transfer from C-2-labeled isopropanol to the re face of oxidized nicotinamide adenine dinucleotide phosphate to form R-[4-xH]-labeled reduced nicotinamide adenine dinucleotide phosphate. The second enzyme, Escherichia coli dihydrofolate reductase, used the xH to reduce 7,8-dihydrofolate (H2F) to form S-[6-xH]5,6,7,8-tetrahydrofolate (S-[6-xH]H4F). The enzymatic reactions were followed by chemical trapping of S-[6-xH]H4F with formaldehyde to form the final product. Product purification was carried out in a single step by reverse phase high-pressure liquid chromatography separation followed by lyophilization. Two analytical methods were developed to follow the reaction progress. Finally, the utility of the labeled cofactor in mechanistic studies of thymidylate synthase is demonstrated by measuring the tritium kinetic isotope effect on the enzyme's second order rate constant.  相似文献   

19.
A mutation, pnt-1, causing loss of pyridine nucleotide transhydrogenase activity in Escherichia coli, was mapped by assaying for the enzyme in extracts of recombinant strains produced by conjugation, F-duction, and P1 transduction. The site of this mutation was near min 35, counterclockwise from man, and it co-transduced 59% with man. The mutation was associated with loss from the cell membrane fraction of energy-independent and adenosine 5'-triphosphate-dependent transhydrogenase activities, but reduced nicotinamide adenine dinucleotide dehydrogenase activity was not affected. Strains were constructed which lack phosphoglucoisomerase (pgi-2) and which carry either pnt+ or pnt-1. Although such strains, when grown on glucose, are expected to produce a large excess of reduced nicotinamide adenine dinucleotide phosphate, the growth rate was not affected by the pnt-1 allele.  相似文献   

20.
Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) are of universal occurrence in living organisms and play a central role in coupling oxidative with reductive reactions. However, the evidence that the origin and early evolution of life occurred at high temperatures (>95°C) is now strong, and at these temperatures some modern metabolites, including both the reduced and oxidized forms of these coenzymes, are unstable. We believe there is good evidence that indicates that in the most primitive organisms nonhem iron proteins carried out many or all of the functions of NAD/P(H). This has important implications for the way in which investigations of archaebacterial metabolism are conducted.Abbreviations NAD/P(H)a Oxidised and reduced forms of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号