首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Summary Rat parathyroids fixed by microwave enhancement, i.e. microwave irradiation in the presence of glutaraldehyde for 8 s and postfixation with OsO4 after a delay of 5 min, were compared with parathyroids fixed by perfusion with glutaraldehyde followed by immersion in glutaraldehyde and finally in OsO4. Morphometric analysis revealed that microwave enhanced fixation led to larger mean cell volume, to larger cell surface area, and to larger suface area in membranes of RER and secretory granules. Though it is not known by which method parathyroid cells are conserved closer to the living state it is obvious that microwave enhanced fixation retains more membranes but provokes centrifugal dislocation of membranes mimiking exocytosis.  相似文献   

2.
Parathyroid cell variants, commonly observed in parathyroid glands fixed by immersion in glutaraldehyde, are believed to be the result of cyclic changes in the course of parathyroid hormone secretion. Immersion of bovine parathyroid glands in a mixture consisting of 1% glutaraldehyde, 1.5% formaldehyde, and 2.5% acrolein, followed by post-fixation in 1% osmium tetroxide, resulted in high uniformity with only one cell variant, whereas the same fixation procedure led to disruption of cell membranes and formation of cell variants in rat parathyroids. Parathyroid glands of both cattle and rats prepared by high-pressure quick-freezing and subsequent freeze-substitution contained only one cell variant. Excellent preservation of the ultrastructure of bovine and rat parathyroids, also exhibiting only one cell variant, was achieved by microwave irradiation in the presence of 2.5% glutaraldehyde in Na-cacodylate followed by post-fixation with OsO4 in Na-cacodylate or s-collidine, both containing Ca2+ and Mg2+. Use of the appropriate buffer, as well as osmication, is essential for successful fixation utilizing microwave energy. The main effects are considered to be heating specimens within sufficient short periods and enhancement of subsequent osmium fixation. The results support the idea, arising after examination of perfusion-fixed parathyroid tissue, that parathyroid cell variants occur during improper aldehyde fixation rather than that they express functional diversity.  相似文献   

3.
Parathyroid glands of cattle, dogs, cats, mice and rats were immersed in glutaraldehyde or mixtures consisting of glutaraldehyde, formaldehyde and acrolein in either Na-phosphate, Na/K-phosphate or Na-cacodylate buffer, and postfixed with OsO4 in the same buffers or, alternatively, in s-collidine. Excellent preservation of bovine, feline and murine parathyroid glands was achieved with fixation mixtures containing 1% glutaraldehyde, 1.5-2% formaldehyde and 2.5-5% acrolein in 0.1 M Na-cacodylate with or without Ca2+ and Mg2+, Na-phosphate or Na/K-phosphate at 4 degrees C followed by postfixation with 1% OsO4 in the same buffers or in s-collidine containing sucrose, Ca2+ and Mg2+. This procedure largely abolished the occurrence of parathyroid cell variants. Bovine parathyroid glands were also satisfactorily preserved with 1% glutaraldehyde and 2% formaldehyde whereas 1% glutaraldehyde and 2.5 or 5% acrolein, lower or higher buffer osmolarity, or immersion at room temperature led to vacuolization of RER and to breakdown of membranes. In contrast, all fixation protocols led to the formation of dark and light cell variants and to multinucleated syncytial cells in dog and rat parathyroids. The results thus show that parathyroid cell variants arise during immersion fixation and that aldehydes, buffers and temperature are important factors for provoking parathyroid cell variants.  相似文献   

4.
Lipotubuloids, structures containing lipid bodies and microtubules, are described in ovary epidermal cells of Ornithogalum umbellatum. Microtubules of lipotubuloids can be fixed in electron microscope fixative containing only buffered OsO(4) or in glutaraldehyde with OsO(4) post-fixation, or in a mixture of OsO(4) and glutaraldehyde. None of these substances fixes cortical microtubules of ovary epidermis of this plant which is characterized by dynamic longitudinal growth. However, cortical microtubules can be fixed with cold methanol according immunocytological methods with the use of β-tubulin antibodies and fluorescein. The existence of cortical microtubules has also been evidenced by EM observations solely after the use of taxol, microtubule stabilizer, and fixation in a glutaraldehyde/OsO(4) mixture. These microtubules mostly lie transversely, sometimes obliquely, and rarely parallel to the cell axis. Staining, using Ruthenium Red and silver hexamine, has revealed that lipotubuloid microtubules surface is covered with polysaccharides. The presumption has been made that the presence of a polysaccharide layer enhances the stability of lipotubuloid microtubules.  相似文献   

5.
The exine of birch pollen was examined by scanning and transmission electron microscopy in the native state and after fixation in different aqueous fixatives: glutaraldehyde + OsO4; glutaraldehyde + cetylpyridinium chloride (CPC) + OsO4; glutaraldehyde + cuprolinic blue (CB); and periodate + lysine + paraformaldehyde (PLP). The native pollen exine showed a thin (3-5-nm) border of electron-dense material lining the tectum and electron-dense material within microchannels and bacula cavities. Fixation with the addition of CPC resulted in a voluminous surface coat surrounding the pollen grain, but empty microchannels and bacula cavities. After fixation with the addition of CB, there was a thin surface coat, whereas microchannels and bacula cavities were partially filled with electron-dense material. The other fixatives led to empty microchannels and bacula cavities. There was no surface coat on the pollen grain. However, after all fixation procedures, a thin electron-dense border of the tectum remained visible. Concerning the electron-dense material filling microchannels and bacula cavities in the native pollen grain, the results obtained in the present study suggest that it is either completely lost (after conventional and PLP fixation) or, after fixation with a precipitating additive, partially (CB) or completely (CPC) solubilized and precipitated on the surface of the pollen grain as a surface coat.  相似文献   

6.
When thin sections of spermatogenic chromatin are fixed with either glutaraldehyde alone or postfixed with osmium tetroxide (OsO4) and stained with uranyl acetate (UAc) for increasing times, even after as little as 1 min, stain uptake is proportional to section thickness. Greater UAc uptake is observed in chromatin fixed with glutaraldehyde only, but seen with postfixed chromatin. Lead citrate poststaining of chromatin fixed with either glutaraldehyde or postfixed with OsO4 increases UAc uptake by a factor of about 3. The staining of thin sections of spermatogenic chromatin with ethanolic phosphotungstic acid (PTA) shows a region where stain uptake is proportional to section thickness followed by a plateau. This staining pattern is seen in chromatin fixed with glutaraldehyde alone or postfixed with OsO4; similar levels for final PTA uptake are also observed. An increase in the resin content of embedded chromatin postfixed with OsO4 is proposed to explain the decrease and increase in the rate of migration of UAc and ethanolic PTA staining solutions, respectively.  相似文献   

7.
R H Rhodes 《Histochemistry》1983,78(1):125-143
The vitreous body contains complex carbohydrates that can be demonstrated morphologically. Vitreous hyaluronic acid is very soluble but it can be precipitated by cetylpyridinium chloride (CPC) while being cross-linked by glutaraldehyde. Oligosaccharide chains of vitreous glycoproteins are fixed with glutaraldehyde alone. Mouse eyes were fixed with glutaraldehyde or glutaraldehyde and CPC and the complex carbohydrates of the posterior vitreous cortex were studied by electron microscopy. Cationic dyes were used in the fixative or for block-staining on most fixed tissue blocks to allow detailed observations of complex carbohydrates. Most blocks were postfixed with OsO4. The hyaluronic-acid domain on vitreous collagen fibrils sequentially contracted and expanded in size with various histochemical manipulations. Contraction of the domain of hyaluronic acid generally indicates an increased charge density. OsO4 contributes considerable charge density upon forming osmate esters, but tissue postfixed with OsO4 contained large globular forms of hyaluronic acid rather than the small globules observed in non-osmicated preparations. A model is proposed to explain the seemingly paradoxical findings by reference to suggested mechanisms of polysaccharide-ligand-OsO4 interactions.  相似文献   

8.
The fine structure of Bacillus subtilis has been studied by observing sections fixed in KMnO(4), OsO(4), or a combination of both. The majority of examinations were made in samples fixed in 2.0 per cent KMnO(4) in tap water. Samples were embedded in butyl methacrylate for sectioning. In general, KMnO(4) fixation appeared to provide much better definition of the boundaries of various structures than did OsO(4). With either type of fixation, however, the surface structure of the cell appeared to consist of two components: cell wall and cytoplasmic membrane. Each of these, in turn, was observed to have a double aspect. The cell wall appeared to be composed of an outer part, broad and light, and an inner part, thin and dense. The cytoplasmic membrane appeared (at times, under KMnO(4) fixation) as two thin lines. In cells fixed first with OsO(4) solution, and then refixed with a mixture of KMnO(4) and OsO(4) solutions, the features revealed were more or less a mixture of those revealed by each fixation alone. A homogeneous, smooth structure, lacking a vacuole-like space, was identified as the nuclear structure in a form relatively free of artifacts. Two unidentified structures were observed in the cytoplasm when B. subtilis was fixed with KMnO(4). One a tortuous, fine filamentous element associated with a narrow light space, was often found near the ends of cells, or attached to one end of the pre-spore. The other showed a special inner structure somewhat similar to cristae mitochondriales.  相似文献   

9.
In the electron microscope, thin sections of OsO(4)-fixed myelin figures from the phospholipide fraction of human brain show a pattern of parallel dark lines with a repeating period of about 40 A. It is shown that the dark lines probably represent the reaction product of OsO(4) with double bonds in the fatty acid chains, thereby marking the central portion of one bimolecular lamella. The addition of globin results in dense lines 25 to 50 A wide that cover the surface of the myelin figures. When such a figure consists of only two bimolecular leaflets of lipide covered with globin, the structure shows striking similarity to the image of cell membranes in fixed tissue sections. A hypothetical schema is given of the molecular structure of the figure, and the distribution of OsO(4) in it.  相似文献   

10.
The nucleoid of living and OsO4- or glutaraldehyde-fixed cells of Escherichia coli strains was studied with a phase-contrast microscope, a confocal scanning light microscope, and an electron microscope. The trustworthiness of the images obtained with the confocal scanning light microscope was investigated by comparison with phase-contrast micrographs and reconstructions based on serially sectioned material of DNA-containing and DNA-less cells. This comparison showed higher resolution of the confocal scanning light microscope as compared with the phase-contrast microscope, and agreement with results obtained with the electron microscope. The effects of fixation on the structure of the nucleoid were studied in E. coli B/r H266. Confocal scanning light micrographs and electron microscopic reconstructions showed that the shape of the nucleoid remained similar after OsO4 or glutaraldehyde fixation; however, the OsO4 nucleoid appeared to be somewhat smaller and more centralized within the cell.  相似文献   

11.
The potential of scanning electron microscopy as a tool for the detection of viruses on cell surfaces has been studied using bacteriophage P1 adsorbed to Shigella dysenteriae as a model system. Viral particles were readily detectable by scanning electron microscopy on the surface of infected cells which were fixed with glutaraldehyde followed by postfixation in OsO4 and prepared by critical point drying. The virus-studded surface of the infected cells differed markedly from the relatively smooth surfaces of uninfected control cells. Examination of the same preparations with transmission electron microscopy revealed numerous viral particles adsorbed to the surfaces of infected cells, whereas the control cells were free of viruses as expected. Glutaraldehyde fixation alone did not preserve the surface detail of infected cells: cells adsorbed with viruses were not distinguishable from control cells by scanning electron microscopy although by transmission electron microscopy viruses could be visualized. Air drying from water or absolute alcohol resulted in unsatisfactory preservation as compared to the appearance of infected cells prepared by the critical point method. Thus, scanning electron microscopy is capable of resolving viral particles on cell surfaces, but detection of these particles is completely dependent both on the method of fixation and on the technique of drying used.  相似文献   

12.
Fixation of HeLa cells with a mixture of 100 mM glutaraldehyde, 2 mg/ml tannic acid and 0.5 mg/ml saponin allows the tannic acid to penetrate intact cells without disruption of membranes or extraction of the cytoplasmic matrix. After subsequent treatment with OsO4 cytoplasmic structures are stained so densely that fine details are visible even in very thin (dark gray) sections. Actin filaments are protected from disruption by OsO4 so that straight, densely stained filaments are seen in the cell cortex, filopodia, ruffling membranes, and stress fibers. Stress fibers also have 15-18-nm densities similar in appearance to myosin filaments. Tannic acid staining reveals that the coats of coated vesicles, pits, and plaques have a 12-nm layer of amorphous material between the membrane and the clathrin basketwork. HeLa cells have very large clathrin-coated membrane plaques on the basal surface. These coated membrane plaques appear to be a previously unrecognized site of cell-substrate adhesion.  相似文献   

13.
Electron staining of the cell surface coat by osmium-low ferrocyanide   总被引:2,自引:0,他引:2  
W F Neiss 《Histochemistry》1984,80(3):231-242
In aldehyde-fixed liver and renal cortex of rat and mouse several variations of postfixation with osmium tetroxide plus potassium ferrocyanide ( FeII ) were tried. Depending on the ferrocyanide concentration different staining patterns were observed in TEM. -Osmium-High Ferrocyanide [40 mM (approximately 1%) OsO4 + 36 mM (approximately 1.5%) FeII , pH 10.4], stains membranes and glycogen. Cytoplasmic ground substance, mitochondrial matrices and chromatin are partially extracted, cell surface coats remain unstained. Membrane contrast, but extraction too, are higher with solutions containing cacodylate- than phosphate-buffer. -Osmium-Low Ferrocyanide [40 mM (approximately 1%) OsO4 + 2 mM (approximately 0.08%) FeII , pH 7.4], stains cell surface coats and basal laminae, but not glycogen, except for special cases. The trilaminar structure of membranes is poorly delineated. Signs of cytoplasmic extraction are not visible. The surface coat staining is stronger and more widespread with solutions containing phosphate- instead of cacodylate-buffer; it is enhanced by section staining with lead citrate. The cell surface coat stain does not traverse tight junctions nor permeate membranes.  相似文献   

14.
Silicotungstic acid (STA), an electron dense substance and a powerful precipitating agent of quaternary ammonium salts such as choline and acetylcholine, was employed on the frog motor end-plate in order to prove that STA reacts with diffusible substance(s) in nerve terminals. Thus, STA treatment and osmium tetroxide (OsO4) fixation were performed in three different ways. No reaction was detectable when STA treatment followed osmification, while simultaneous treatment with STA and OsO4 darkened both presynaptic and synaptic vesicle membranes. When STA was employed directly on fresh tissues which were subsequently fixed by OsO4, small black precipitates were observed in the synaptic vesicles and none on other synaptic structures. The possible reaction of STA with acetylcholine is discussed.  相似文献   

15.
The concentration of osmium has been measured by destructive chemical analysis in glutaraldehyde fixed heart tissue postfixed with osmium tetroxide and embedded in epoxy resin. After such treatment, the mean atomic number of the specimen (Z) is close to 10, which permits a quantitative analysis of calcium (Ca) by the continuum method, using Z2/A as a correcting factor (A: atomic weight). Wavelength-dispersive X-ray microanalysis has been used to determine the Ca concentration of frog cardiac tissue fixed in glutaraldehyde and embedded in resin. These measurements have been repeated on tissue postfixed in osmium tetroxide; contrary to expectations, the apparent Ca concentration is much higher in osmium treated than in nontreated tissue. However, this result is observed with OsO4 solutions prepared in glass, not with solutions prepared in plastic. It is shown by energy dispersive X-ray analysis of droplets that OsO4 solutions prepared in glass contain large amounts of calcium, potassium and silicon. Care must be taken in preparing OsO4 fixatives when the fixed tissues are to be subjected to X-ray microanalysis of such elements as Ca or Si.  相似文献   

16.
Comparative electron microscope and X-ray studies were made on the frog sciatic nerve myelin after freeze-drying technique. The specimens were fixed with OsO4 before and after freeze-drying. In the latter case, osmium was used as a hydrophobic solution (OsO4 in CCl4), or in the high vacuum during osmium sublimation. The results obtained in this study do not fit in the accepted mechanism operating during osmium fixation of membranes. Another mechanism is proposed by the authors, and the problem of osmium localization within the space of the myelin repeated unit is discussed.  相似文献   

17.
Summary It was demonstrated that microwave energy used simultaneously in combination with low concentrations of glutaraldehyde (0.05%) and formaldehyde (2.0%) rapidly preserved light microscopic histology and excellent fine structural details, as well as a variety of cytoplasmic and membrane-bound antigens. Specimen blocks up to 1 cm3 can be fixed in as brief a time as 26 ms using a specially designed microwave device (ultrafast microwave fixation method). The fast microwave fixation method, using a commercially available device, was successfully used to preserve granule-bound rat mast cell chymase which was subsequently detected by a postembedding immunogold procedure. Control of the following parameters is important to the microwave fixation method: (1) specimens with one dimension less than 1 cm; (2) irradiation temperatures lower than 50°C; (3) irradiation times less than 50 s; (4) immediate replacement of the postirradiation solution with cold storage buffer; (5) fixing the specimen within 15 min after it is removed from its blood supply.  相似文献   

18.
Summary Liver, skeletal muscle, peripheral nerves, pancreas, thyroid and adrenal cortex were prepared for electron microscopy employing microwave energy either during prefixation with glutaraldehyde or instead of prefixation. Microwave irradiation in the presence of glutaraldehyde in Na/K-phosphate or Na-cacodylate containing CaCl2 and MgCl2 led to distinct appearance of membranes, mainly plasma membrane, and membranes of SER, Golgi complex and mitochondria in liver, pancreas and muscle. The area of high quality fixation, however, was limited to the periphery of samples. On the other hand, SER was dilated in cells of the adrenal cortex, and RER markedly vacuolated in thyroid follicular cells.Microwave irradiation in the presence of Na/K-phosphate and subsequent osmication resulted in preservation of the ultrastructure in similar quality as was obtained by osmication without previous immersion in glutaraldehyde. However, the preservation of SER and Golgi complex in liver and pancreas, and of mitochondria in muscle was greatly improved. Small myelin sheaths remained intact whereas large ones showed focal disintegration.We consider that enhancement of fixation by microwave energy may greatly improve preservation of membranes in some tissues. Successful fixation depends on the use of glutaraldehyde during microwave irradiation, the type of buffer, the addition of ions to increase stabilization, the exposure time to heat, and on postosmication.  相似文献   

19.
Several compounds of osmiumVIII, including potassium osmiamate and coordination complexes of OsO4 with ammonia and various heterocyclic nitrogen compounds, have been synthesized and characterized. They have also been evaluated as substitutes for OsO4 in postfixation of biological specimens and in light and electron microscopic cytochemical methods resulting in osmium black formation. The most useful of these osmic compounds, a molecular addition complex of hexamethylenetetramine (methenamine) with OsO4, has a negligible vapor pressure of OsO4. It has the molecular formula C6H12N4.2OsO4 and has been designated osmeth. Although it has only limited solubility, aqueous solutions of the compound (or of OsO4) can be rapidly prepared by dissolution in a minimal amount of dimethylformamide and subsequent dilution with distilled water or buffer. Although stable in the solid state, the complex in solution undergoes partial dissociation releasing OsO4, and the odor of OsO4 becomes apparent. Such solutions of osmeth are (approximately 0.25%) considerably less concentrated with respect to OsO4 than solutions (1-2%) ordinarily employed for ultrastructural preservation or in cytochemical studies. Osmeth has limited value for postosmication after glutaraldehyde fixation because the generation (release) of OsO4 appears to be slow. Adequate osmication of tissue blocks exists only at the surface, but effective osmication can be achieved throughout tissue sections. In cytochemical reactions resulting in the formation of osmium blacks, the osmeth solutions are as effective as OsO4 solutions of equivalent concentrations. Our findings indicate that OsO4 solutions of less than 1% may be satisfactorily utilized in many cytochemical studies. Osmeth is safer and more convenient to handle than OsO4 because small amounts may be solubilized as needed. It should be considered as a substitute for OsO4 in ultrastructural cytochemistry. These results suggest that the effectiveness of OsO4 as a fixative may, in part, be related to its nonpolarity.The infrared spectra indicate that the OsO4 molecule is tetrahedral, perfectly symmetrical and, therefore, as a whole nonpolar. As a consequence, it could be expected to readily penetrate charged surfaces of tissues, cells, and organelles. The spectral studies show that osmeth is much less symmetrical and, to that extent, polar; thus, it penetrates biomembranes less readily.  相似文献   

20.
Potency of microwave irradiation during fixation for electron microscopy   总被引:1,自引:0,他引:1  
Liver, skeletal muscle, peripheral nerves, pancreas, thyroid and adrenal cortex were prepared for electron microscopy employing microwave energy either during prefixation with glutaraldehyde or instead of prefixation. Microwave irradiation in the presence of glutaraldehyde in Na/K-phosphate or Na-cacodylate containing CaCl2 and MgCl2 led to distinct appearance of membranes, mainly plasma membrane, and membranes of SER, Golgi complex and mitochondria in liver, pancreas and muscle. The area of high quality fixation, however, was limited to the periphery of samples. On the other hand, SER was dilated in cells of the adrenal cortex, and RER markedly vacuolated in thyroid follicular cells. Microwave irradiation in the presence of Na/K-phosphate and subsequent osmication resulted in preservation of the ultrastructure in similar quality as was obtained by osmication without previous immersion in glutaraldehyde. However, the preservation of SER and Golgi complex in liver and pancreas, and of mitochondria in muscle was greatly improved. Small myelin sheaths remained intact whereas large ones showed focal disintegration. We consider that enhancement of fixation by microwave energy may greatly improve preservation of membranes in some tissues. Successful fixation depends on the use of glutaraldehyde during microwave irradiation, the type of buffer, the addition of ions to increase stabilization, the exposure time to heat, and on postosmication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号