共查询到20条相似文献,搜索用时 0 毫秒
1.
Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation’s extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation’s extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation’s extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation’s extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation’s extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation’s extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity. 相似文献
2.
《Journal of biological dynamics》2013,7(1):187-205
To understand the interplay between environmental stochasticity and Allee effects, we analyse persistence, asymptotic extinction, and conditional persistence for stochastic difference equations. Our analysis reveals that persistence requires that the geometric mean of fitness at low densities is greater than one. When this geometric mean is less than one, asymptotic extinction occurs with high probability for low initial population densities. Additionally, if the population only experiences positive density-dependent feedbacks, conditional persistence occurs provided the geometric mean of fitness at high population densities is greater than one. However, if the population experiences both positive and negative density-dependent feedbacks, conditional persistence only occurs if environmental fluctuations are sufficiently small. We illustrate counter-intuitively that environmental fluctuations can increase the probability of persistence when populations are initially at low densities, and can cause asymptotic extinction of populations experiencing intermediate predation rates despite conditional persistence occurring at higher predation rates. 相似文献
3.
An emerging generalization from theoretical and empirical studies on conservation biology is that high levels of environmental stochasticity increase the likelihood of population extinction. However, coexistence theory has illustrated that there are circumstances under which environmental stochasticity can increase the chance of population persistence. These theoretical studies have shown that the sign of the effect of environmental stochasticity on population persistence is determined by interactions between life history and environmental stochasticity. These interactions mean that the stochastic and deterministic rates of population growth might differ fundamentally. Although difficult to demonstrate in real systems, observed life histories and variance in the vital rates of populations suggest that this phenomenon is likely to be common, and is therefore of much relevance to conservation biologists. 相似文献
4.
Environmental stochasticity and extinction risk in a population of a small songbird, the great tit 总被引:2,自引:0,他引:2
Using a long-term demographic data set, we estimated the separate effects of demographic and environmental stochasticity in the growth rate of the great tit population in Wytham Wood, United Kingdom. Assuming logistic density regulation, both the demographic (sigma2d = 0.569) and environmental (sigma2e = 0.0793) variance, with interactions included, were significantly greater than zero. The estimates of the demographic variance seemed to be relatively insensitive to the length of the study period, whereas reliable estimates of the environmental variance required long time series (at least 15 yr of data). The demographic variance decreased significantly with increasing population density. These estimates are used in a quantitative analysis of the demographic factors affecting the risk of extinction of this population. The very long expected time to extinction of this population (approximately 10(19) yr) was related to a relatively large population size (>/=120 pairs during the study period). However, for a given population size, the expected time to extinction was sensitive to both variation in population growth rate and environmental stochasticity. Furthermore, the form of the density regulation strongly affected the expected time to extinction. Time to extinction decreased when the maximum density regulation approached K. This suggests that estimates of viability of small populations should be given both with and without inclusion of density dependence. 相似文献
5.
Vicenç Méndez Isaac Llopis Daniel Campos Werner Horsthemke 《Theoretical population biology》2010,77(4):250-256
We determine the critical patch size below which extinction occurs for populations living in one-dimensional habitats surrounded by completely hostile environments in the presence of environmental fluctuations. The population dynamics is reformulated in terms of a stochastic reaction–diffusion equation and is reduced to a deterministic equation that incorporates the systematic contributions of the noise. We obtain bifurcation diagrams and relations for the mean population density at the stationary state, the critical patch size, and the mean number of individuals in the habitat. The effect of the noise differs, depending on whether it affects the net growth rate or the intraspecific competition term. Fluctuations in the net growth rate decrease the critical patch size, whereas fluctuations in the competition term do not change the critical patch size. We compare our analytical results with numerical solutions of the stochastic partial differential equations and show that our procedure proves useful in dealing with reaction–diffusion equations with multiplicative noise. 相似文献
6.
Agata Plesnar-Bielak Anna M. Skrzynecka Zofia M. Prokop Jacek Radwan 《Proceedings. Biological sciences / The Royal Society》2012,279(1747):4661-4667
Failure of organisms to adapt to sudden environmental changes may lead to extinction. The type of mating system, by affecting fertility and the strength of sexual selection, may have a major impact on a population''s chances to adapt and survive. Here, we use experimental evolution in bulb mites (Rhizoglyphus robini) to examine the effects of the mating system on population performance under environmental change. We demonstrate that populations in which monogamy was enforced suffered a dramatic fitness decline when evolving at an increased temperature, whereas the negative effects of change in a thermal environment were alleviated in polygamous populations. Strikingly, within 17 generations, all monogamous populations experiencing higher temperature went extinct, whereas all polygamous populations survived. Our results show that the mating system may have dramatic effects on the risk of extinction under environmental change. 相似文献
7.
van de Pol M Vindenes Y Sæther BE Engen S Ens BJ Oosterbeek K Tinbergen JM 《Proceedings. Biological sciences / The Royal Society》2011,278(1725):3713-3722
The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms-which probably act in many species-can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought. 相似文献
8.
9.
Increased temporal variance in life-history traits is generally predicted to decrease individual fitness and population growth. We show that a widely used result of stochastic sensitivity analysis that bolsters this generality is flawed because it ignores the effects of correlations between vital rates. Considering the effects of these correlations (although ignoring autocorrelations), we show that the apparently simple relationship between vital rate variance and fitness can be considerably more complex than previously thought. In particular, the previously estimated negative sensitivities of fitness or population growth to variance in a vital rate can be either enhanced by positive correlations between rates or reversed by negative correlations, even to the point that variability in a rate can increase fitness or population growth. We apply this new sensitivity calculation to data from the desert tortoise and discuss its interpretation in light of the factors generating vital rate correlations. 相似文献
10.
Metapopulation extinction in fragmented landscapes: using bacteria and protozoa communities as model ecosystems 总被引:3,自引:0,他引:3
Burkey TV 《The American naturalist》1997,150(5):568-591
Extinction is notoriously difficult to study because of the long timescales involved and the difficulty in ascertaining that extinction has actually occurred. The effect of habitat subdivision, or fragmentation, on extinction risk is even harder to study, as it requires copious replication of habitat patches on large spatial scales and control of area effects between treatments. I used simple small-scale communities of bacteria and protozoa to study extinction in response to habitat loss and habitat fragmentation. I studied several different community configurations, each with three trophic levels. Unlike most metapopulation studies (experimental as well as theoretical), which have tended to deal with inherently unstable species interactions, I deliberately used community configurations that were persistent in large stock cultures. I recorded the time to extinction of the top predator in single habitat patches of different sizes and in fragmented systems with different degrees of subdivision but the same amount of available habitat. Habitat loss reduced the time to extinction of isolated populations. Fragmented systems went extinct sooner than corresponding unfragmented (continuous) systems of the same overall size. Unfragmented populations persisted longer than fragmented systems (metapopulations) with or without dispersal corridors between subpopulations. In fact, fragmented systems where the fragments were linked by dispersal corridors went extinctly significantly sooner than those where subpopulations were completely isolated from each other. If these results extend to more "natural" systems, it suggests a need for caution in management programs that emphasize widespread establishment of wildlife corridors in fragmented landscapes. 相似文献
11.
The demographic variance of an age-structured population is defined. This parameter is further split into components generated by demographic stochasticity in each vital rate. The applicability of these parameters are investigated by checking how an age-structured population process can be approximated by a diffusion with only three parameters. These are the deterministic growth rate computed from the expected projection matrix and the environmental and demographic variances. We also consider age-structured populations where the fecundity at any stage is either zero or one, and there is neither environmental stochasticity nor dependence between individual fecundity and survival. In this case the demographic variance is uniquely determined by the vital rates defining the projection matrix. The demographic variance for a long-lived bird species, the wandering albatross in the southwestern part of the Indian Ocean, is estimated. We also compute estimates of the age-specific contributions to the total demographic variance from survival, fecundity and the covariance between survival and fecundity. 相似文献
12.
The relative contribution of density-dependent regulation and environmental stochasticity to the temporal dynamics of animal
populations is one of the central issues of ecology. In insects, the primary role of the latter factor, typically represented
by weather patterns, is widely accepted. We have evaluated the impact of density dependence as well as density-independent
factors, including weather and mowing regime, on annual fluctuations of butterfly populations. As model species, we used Maculinea alcon and M. teleius living in sympatry and, consequently, we also analysed the effect of their potential competition. Density dependence alone
explained 62 and 42% of the variation in the year-to-year trends of M. alcon and M. teleius, respectively. The cumulative Akaike weight of models with density dependence, which can be interpreted as the probability
that this factor should be contained in the most appropriate population dynamics model, exceeded 0.97 for both species. In
contrast, the impacts of inter-specific competition, mowing regime and weather were much weaker, with their cumulative weights
being in the range of 0.08–0.21; in addition, each of these factors explained only 2–5% of additional variation in Maculinea population trends. Our results provide strong evidence for density-dependent regulation in Maculinea, while the influence of environmental stochasticity is rather minor. In the light of several recent studies on other butterflies
that detected significant density-dependent effects, it would appear that density-dependent regulation may be more widespread
in this group than previously thought, while the role of environmental stochasticity has probably been overestimated. We suggest
that this misconception is the result of deficiencies in the design of most butterfly population studies in the past, including
(1) a strong focus on adults and a neglect of the larval stage in which density-dependent effects are most likely to occur;
(2) an almost exclusive reliance on transect count results that may confound the impact of environmental stochasticity on
butterfly numbers with its impact on adult longevity.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
13.
We study the dynamics of a metapopulation in which the rates of colonization and/or extinction change along an environmental gradient. Spatially explicit simulations are applied to compare two cases: in parent-dependent colonization (PDC) the rate of colonization is limited by the production of new individuals; in offspring-dependent colonization (ODC) it is limited by the success of establishment of the offspring. Thus, PDC depends on the quality of the parent's site, while ODC is dependent on the offspring's site. We combine PDC and ODC in a spatially implicit model. We study the steady-state distribution of a metapopulation, and ask whether the local densities of occupied sites at each position x along the gradient could be predicted from the local rates of colonization c(x) and extinction e(x). This prediction is not trivial, since the sites are connected, enabling a flow of individuals from more favorable to less favorable sites. The results show that at ODC a single parameter, c(x)/e(x), is sufficient for the prediction. Therefore, different species and geographic regions can be directly compared by appropriate rescaling: choosing the local average lifetime of occupancy, 1/e(x), for a time unit at each point along the gradient. This permits generalizations about the shape of range edges, and can help to predict the position of the boundary of a species' distribution. At PDC, rescaling is not possible: the whole profile of c(x) and e(x) along the gradient has to be taken into consideration. Nevertheless, rescaling gives a good approximation when the parent-dependent component of colonization does not change abruptly across space. 相似文献
14.
Demographic stochasticity has a substantial influence on the growth of small populations and consequently on their extinction risk. Mating system is one of several population characteristics that may affect this. We use a stochastic pair-formation model to investigate the combined effects of mating system, sex ratio, and population size on demographic stochasticity and thus on extinction risk. Our model is designed to accommodate a continuous range of mating systems and sex ratios as well as several levels of stochasticity. We show that it is not mating system alone but combinations of mating system and sex ratio that are important in shaping the stochastic dynamics of populations. Specifically, polygyny has the potential to give a high demographic variance and to lower the stochastic population growth rate substantially, thus also shortening the time to extinction, but the outcome is highly dependent on the sex ratio. In addition, population size is shown to be important. We find a stochastic Allee effect that is amplified by polygyny. Our results demonstrate that both mating system and sex ratio must be considered in conservation planning and that appreciating the role of stochasticity is key to understanding their effects. 相似文献
15.
Genome size and extinction risk in vertebrates 总被引:5,自引:0,他引:5
Vinogradov AE 《Proceedings. Biological sciences / The Royal Society》2004,271(1549):1701-1705
The hypothesis of 'selfish DNA' is tested for the case of animals using the relation between genome size and conservation status of a given species. In contrast to plants, where the larger genome was previously shown to increase the likelihood of extinction, the picture is more complicated in animals. At the within-families and within-orders levels, the larger genome increases the risk of extinction only in reptiles and birds (which have the smallest genomes among tetrapods). In fishes and amphibians, the effect is caused by the higher taxonomic levels (above order). In several phylogenetic lineages of anamniotes, there is a correlation between a higher fraction of threatened species and a lower number of extant species in a lineage with the larger genome. In mammals, no effect was observed at any taxonomic level. The obtained data support the concept of hierarchical selection. It is also shown that, in plants and reptiles, the probability of being threatened increases from less than 10% to more than 80% with the increase in genome size, which can help in establishing conservation priorities. 相似文献
16.
17.
18.
The extinction process of fragmented populations, characterized by a small number of conspecifics inhabiting each patch, is heavily affected by natural and human disturbance. To evaluate the risk of extinction we consider a network of identical patches connected by passive or active dispersal and hosting a finite, discrete number of individuals. We discuss three types of disturbance affecting the metapopulation: permanent loss of habitat patches, erosion of existing patches, and random catastrophes that wipe out the entire population of a patch. Starting from an infinite-dimensional Markov model that fully accounts for demographic stochasticity, we reduce it to finite dimension via moment closure with negative-binomial approximation. The compact models obtained in this way account for the dynamics of the fraction of empty patches, the average number of individuals in occupied patches, and the variance of their distribution. After comparing the performance of these compact models with that of the infinite-dimensional model in the case of no disturbances, we then proceed to computing persistence-extinction boundaries as bifurcation lines of the compact models in the space of demographic and disturbance parameters. We consider bifurcations with respect to demographic and environmental parameters and contrast our results with those of previous theories. We find out that environmental catastrophes increase the risk of extinction for both frequent and infrequent dispersers, while the random loss of patches has a much larger influence on frequent dispersers. This influence can be counterbalanced by active dispersal. Local erosion of habitat fragments has a larger influence on infrequent than on frequent dispersers. We finally discuss the important synergistic effects of disturbances acting simultaneously. 相似文献
19.
Orofacial cleft risk is increased with maternal smoking and specific detoxification-gene variants
下载免费PDF全文

Shi M Christensen K Weinberg CR Romitti P Bathum L Lozada A Morris RW Lovett M Murray JC 《American journal of human genetics》2007,80(1):76-90
Maternal smoking is a recognized risk factor for orofacial clefts. Maternal or fetal pharmacogenetic variants are plausible modulators of this risk. In this work, we studied 5,427 DNA samples, including 1,244 from subjects in Denmark and Iowa with facial clefting and 4,183 from parents, siblings, or unrelated population controls. We examined 25 single-nucleotide polymorphisms in 16 genes in pathways for detoxification of components of cigarette smoke, to look for evidence of gene-environment interactions. For genes identified as related to oral clefting, we studied gene-expression profiles in fetal development in the relevant tissues and time intervals. Maternal smoking was a significant risk factor for clefting and showed dosage effects, in both the Danish and Iowan data. Suggestive effects of variants in the fetal NAT2 and CYP1A1 genes were observed in both the Iowan and the Danish participants. In an expanded case set, NAT2 continued to show significant overtransmission of an allele to the fetus, with a final P value of .00003. There was an interaction between maternal smoking and fetal inheritance of a GSTT1-null deletion, seen in both the Danish (P=.03) and Iowan (P=.002) studies, with a Fisher's combined P value of <.001, which remained significant after correction for multiple comparisons. Gene-expression analysis demonstrated expression of GSTT1 in human embryonic craniofacial tissues during the relevant developmental interval. This study benefited from two large samples, involving independent populations, that provided substantial power and a framework for future studies that could identify a susceptible population for preventive health care. 相似文献
20.
We develop two individual-based models using a large and detailed data set (information gathered over more than a century) on a population of a longlived and territorial predator, the Spanish imperial eagle. We investigated the relationship between survival and predator pressure, prey behaviour and patch availability (i.e. settlement areas). Survival of dispersing individuals was highly dependent on the number of available settlement areas, mediated by prey availability. Changes in prey behaviour due to predation pressure (e.g. shifting from diurnal to nocturnal activity) can decrease their availability for predators even if the density significantly exceeds the predator needs. Environmental stochasticity had a strong influence on population viability when it occurred in a synchroneous way between breeding and settlement areas, and an increase in floater mortality negatively influenced stability and dynamics of the breeding segment of populations in reproductive areas. Our simulations demonstrated the link between the dynamics in settlement and breeding areas: factors affecting floater survival also influence whole population dynamics. Moreover, model outputs provided insights into the relationship between environmental stochasticity and population dynamics. 相似文献